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A1 Mapping of news data to S&P 500 firms

A1.A Map Thomson-Reuters articles to S&P 500 firms

To select Thomson Reuters (TR) articles that mention S&P 500 firms, we map CRSP

PERMNO to Reuters Instrument Code (RIC), where RIC is the stock identifier from

TR. Unfortunately, RICs are not unique identifiers, and we have not been able to obtain

a historical RIC mapping from the company. This section gives the full details of our

mapping from PERMNOs to RICs, and we summarize the process here: (1) Obtain the

augmented article body by combining the headline and body text of an article; (2) Select

articles that contain standardized S&P 500 company names (from the CRSP historical

names table) in the augmented article body and associate these articles with S&P 500

PERMNOs; (3) For each PERMNO, find the top three most frequently occurring RICs in

the selected articles, override unreliable RICs (i.e., those which do not occur sufficiently

frequently) then fetch all articles tagged with these RICs; (4) Keep an article selected
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from (3) if it loosely mentions any S&P 500 company name. Steps (1)-(4) allow us to

create a robust mapping from TR articles to S&P 500 firms.

A1.A.1 Create variants of company names

We create two variants of each S&P 500 company name, denoted as Variant-1 and

Variant-2. Variant-1 is the pattern used in the first pass search and Variant-2 is the

pattern used in the second pass search. See Section A1.A.2 and Section A1.A.3 for the

discussion of first and second pass search.

For each historical firm name, we perform steps 1-11 to get Variant-1, and steps 1-12

to get Variant-2. And we only keep unique Variant-1 and Variant-2 for each PERMNO.

1. Remove extra spaces between words.

2. Replace abbreviations in Table A1.

3. Replace ‘’ / - with space.

4. Replace & if it occurs between words while keep it if it occurs inside a word.

5. Remove all other punctuation marks and do not replace with space.

6. Remove the space which exists between two single word characters.

7. Remove all English stopwords except “under”.1

8. Remove words in Table A2 directly (case-insensitive).

9. Remove words in Table A3 recursively (case-insensitive), i.e. starting from the last

word in the company name, if it is in Table A3 then remove it. Loop until the last

word is not in Table A3.

10. Convert all names to lower case.

11. Capitalize the first character of each word in company name.

12. Remove words in Table A4 recursively (case-insensitive).

1“Under Armour Inc” is an S&P 500 company in our sample, so we should not remove the stopword
“under” from company names.
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A1.A.2 First Pass Search

We first clean Thomson Reuters news data before searching for company names in article

body. We drop non-English language articles or those with urgency < 2. We keep the

first article within each article chain. Two articles belong to the same article chain if they

have the same PNAC and have timestamps within the same 6-hour window in a day (we

divide a day into four 6-hour windows). And we augment the article body with article

headline.

Then we search for Variant-1 in the augmented article body following the steps below:

1. Tokenize Variant-1.

2. Process the augmented article body as follows:

(a) Replace ‘’ / - with space.

(b) Replace & with space if it appears between words.

(c) Replace . with space.

(d) Remove all other punctuation marks.

(e) Tokenize augmented article body and only keep non-empty tokens.

(f) Convert all tokens to lower case. If the first character of a token is capitalized,

keep the first character capitalized and convert all other characters to lower

case.

3. Search for tokens of Variant-1 in the augmented article body. An article is matched

with Variant-1 if all the conditions below are satisfied:

(a) All tokens in Variant-1 can be found in the text.

(b) In the text, the last matched token and the first matched token are within 5

words of each other.

(c) The order of tokens in Variant-1 is preserved in the text.

If an article is matched with a Variant-1 name and the associated PERMNO, then we

say that all the RICs from that article is matched to the PERMNO. We then compute

the frequency of each unique (PERMNO, RIC) pair and extract the top three frequently

occurring RICs for each PERMNO. For a few PERMNOs, the top three PERMNO-RIC

mapping are not robust, so we override the top three RICs with more reasonable ones.
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A1.A.3 Second Pass Search

For each (PERMNO, RIC) pair, we search for the corresponding Variant-2 in the aug-

mented article body and only keep the matched articles after performing the following

steps:

1. Tokenize Variant-2.

2. Process the augmented article body as follows:

(a) Replace ‘’ / - with space.

(b) Replace & with space if it appears between words.

(c) Replace . with space.

(d) Remove all other punctuation.

(e) Tokenize augmented article body and only keep non-empty tokens.

(f) Convert all tokens to lower case. If the first character of a token is capitalized,

keep the first character capitalized and convert all other characters to lower

case.

3. Search for tokens of Variant-2 in the augmented article body. An article is matched

with Variant-2 if all the conditions below are satisfied:

(a) The article is tagged with a top three frequently occurring RIC in its subject.

(b) All tokens in Variant-2 can be found in the text.

(c) In the text, the last matched token and the first matched token are within 5

words of each other.

(d) The order of tokens in Variant-2 is preserved in the text.

A1.B Mapping other news sources to PERMNOs

Since we have created a mapping from TR articles to PERMNOs, we need to map the

alternative news archives (DJ and WSJ from RavenPack and the Financial Times) to

PERMNOs as well. At that point, we can connect TR news with the alternative news

sources via the PERMNO mapping.

We map RavenPack ENTITY IDs to CRSP PERMNOs through the following two

steps. First, we match them based on the first six digits of their CUSIPs, which serve as

unique identifiers for the companies in both data sources. Out of the 1,042 PERMNOs
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in the S&P 500 historical list, we identify a unique RavenPack ENTITY ID for each

of the 648 PERMNOs. Second, in cases where a match is not found, we perform steps

1-11, as outlined in Section A1.A.1, for the company names in both RavenPack and

CRSP datasets. By utilizing the tokenized names from both sources, we further map

90 RavenPack ENTITY IDs to CRSP PERMNOs on a one-to-one basis through exact

matches. As a result of the aforementioned two steps, we obtain a total of 738 PERMNO-

RavenPack ID pairs.

We map Financial Times (FT) articles to CRSP PERMNOs by linking CUSIPs in

the CRSP dataset with the Financial Instrument Global Identifiers (FIGIs) associated

with each FT article from the FT dataset. To match the two identifiers, we utilize the

OpenFIGI API, which provides a list of related FIGIs for each CUSIP of companies in

the S&P 500 historical list. By matching the FIGIs, we obtain a mapping between 1,005

PERMNOs and 251,345 FT articles, resulting in a total of 484,565 PERMNO-FT article

pairs. To ensure the accuracy and reliability of the mapping based on CUSIPs, we collect,

for each FIGI in the mapping, the company’s ticker from the OpenFIGI API and its

name from the FT dataset. We then filter and retain only the PERMNO-FT article pairs

where the company’s ticker and tokenized name match the ticker and name in the CRSP

dataset on the published dates of the articles. This step results in a refined set of 337,918

PERMNO-FT article pairs.

We only keep day t articles about firms that are in S&P 500 on day t. Table A6 shows

how many firm-day observations we have from each news source, as well as how much

overlap there is in firm-day coverage.

A2 Data construction

A2.A Constructing text measures

We construct two article-level text measures, sentiment and entropy, from our news data.

Sentiment involves counting positive and negative words in articles, and entropy involves

counting n-grams in the training corpus and the new text.

A2.A.1 Sentiment

For an article j, we first clean the augmented body text following steps 1-3 and 5 below.

Then we do a case-insensitive search for positive and negative words in the augmented

body using the Loughran and McDonald (2011) sentiment dictionary, and count the
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number of positive words npos
j and the number of negative words nneg

j in article j. We also

count the total number of words nj in article j after we apply steps 1-4 to the augmented

article body.

1. Convert the augmented body text to lower case.

2. Replace non-alphabet characters with space.

3. Tokenize the text.

4. Drop English stopwords.

5. Mark negation using the Das and Chen (2007) method. This appends the string

_NEG to all words following a negating word until an end-of-statement punctuation

mark. Such modified words are then ignored when calculating sentiment.

The sentiment of article j is defined as

SENTj =
npos
j − nneg

j

nj

A2.A.2 Entropy

We extract n-grams from each article following the steps below:

1. Convert the augmented body text to lower case.

2. Replace date strings, entity names, numerical strings and punctuation marks be-

tween sentences, as shown in Table A5 panel A-D.

3. Break the augmented body text into sentences by ***.

4. Within each sentence, replace punctuation marks in Table A5 panel E.

5. Tokenize each sentence and stem the tokens.

6. Obtain the sequence of n-grams in the article, n = 3, 4.

We then count the frequency of each 3-gram and each 4-gram in articles of a given

month. We define the training corpus for month t as articles in months t−27, t−26, · · · , t−
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4, and calculate the frequency of each 3-grams (4-gram) in the training corpus for month

t. The entropy of article j in month t is defined as

ENTROPYj = −
∑

i∈4-gramsj

p̂i,j log q̂i,j

p̂i,j =
ni,j∑

i∈4-gramsj
ni,j

q̂i,j =
ĉt−27,t−4 (w1,iw2,iw3,iw4,i) + 1

ĉt−27,t−4 (w1,iw2,iw3,i) + 10

where 4-gramsj is the set of distinct 4-grams in article j, ni,j is the count of 4-gram i

in document j, ĉt−27,t−4 (w1,iw2,iw3,iw4,i) is the count of 4-gram i in the training corpus,

ĉt−27,t−4 (w1,kw2,kw3,k) is the count of the 3-gram associated with 4-gram i in the training

corpus.

A2.B Measuring passive and active ownership in stocks

We obtain mutual fund characteristics and holdings data from CRSP Survivor-Bias-Free

US Mutual Fund database and Thomson Reuters (TR) Mutual Fund Holdings database.

We identify index/passive mutual funds by searching for certain strings in CRSP fund

names and supplement this information with the index fund indicator from CRSP.

We focus on US domestic equity mutual funds2 from CRSP and classify them into

passive, active or unclassified categories. For each CRSP fund, we do the following.

1. Fill in missing fund names using the most recently available one.

2. Replace the following characters in fund name with space: `˜! @ # $ % ˆ*() + −
= [ ] \{}|; : “ ” , . / <>?

3. Classify the fund based on the following criteria:

(a) If the fund has a CRSP index fund indicator (index fund flag) in {B, D, E},
then it is a passive fund.

(b) Otherwise,

i. If the fund name includes a word/phase in {index, idx, indx, ind, russell,
s & p, s and p, s&p, sandp, sp, dow, dj, msci, bloomberg, kbw, nasdaq,

2We focus on US domestic equity mutual funds because they have the most complete and reliable
holdings data.
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nyse, stoxx, ftse, wilshire, morningstar, 100, 400, 500, 600, 900, 1000, 1500,

2000, 5000}3, then the fund is passive.

ii. Otherwise,

A. If the fund has missing name and missing CRSP index fund indicator,

then it is unclassified.

B. In all other cases, the fund is active.

We then match CRSP funds to TR funds using the link tables from MFLINKS.

MFLINKS maps CRSP funds and TR funds to a common Wharton Financial Institution

Center Number (WFICN), which uniquely identifies a fund.4 Finally, we map TR fund

holdings to CRSP stocks by historical CUSIP, and construct the mutual fund holdings

dataset at fund-stock level.

A2.C Trimming mutual fund ownership variables

Figure A1 depicts the cross-sectional correlations between the passive and active owner-

ship series. The top panel shows the correlations using all available data. The three corre-

lations spike in early 2011. For example, Corr(PASSIVE/MARKET, ACTIVE/MARKET)

increases from 0.2573455 to 0.5809107 in the first quarter of 2011. This pattern is

caused by outliers in terms of PASSIVE/MARKET and ACTIVE/MARKET values.

From Q1 2011 onward, we have stocks with very few mutual fund holders and their

PASSIVE/MARKET and ACTIVE/MARKET are close to zero, which drives up the cor-

relations between the passive and active series. In the bottom panel of Figure A1, we

exclude the bottom 2.5% observations of each series and recompute their correlations. We

no longer see the spikes in the correlations. We discuss this further in Section A7.E.

3 denotes a space character.
4CRSP mutual fund data is at the share-class level, so there could be multiple CRSP funds associated

with the same WFICN and they all have the same holdings. We only keep one CRSP fund for each
WFICN.
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A3 Model development

A3.A One-period model

Assume a one period model, where an agent (indexed by i) solves the following mean-

variance portfolio problem with benchmarking penalty

(A1) max
w

w⊤ (µi − P )− γi
2
w⊤Σw − 1

2
(w − x)⊤Λi (w − x)

for w, x, µi, P ∈ RN . P is the vector of security prices, w is the agent’s portfolio holdings,

µi is agent i’s expectations about end-of-period security values, and Σ is the covariance

matrix of end-of-period security values conditional on the investor’s information set. The

vector x captures the benchmark target, and Λi ∈ RN×N is a symmetric matrix which

represents the deviation penalty. γi ≥ 0 is the investor’s risk aversion.

The first-order condition for the problem is

µi − P − γiΣw − Λi (w − x) = 0.

Rearranging we find

(A2) wi = (γiΣ + Λi)
−1 (µi − P + Λix) .

The price elasticity of demand is

(A3)
∂wi

∂P
= −(γiΣ + Λi)

−1,

so higher benchmarking penalty or higher risk aversion play a similar role of decreasing

price elasticity. Note (A3) is also the elasticity of demand with respect to an investor’s

beliefs about future returns µi.

Market clearing requires ∑
i

ϕiwi = S,

where ϕi is the fraction of the population represented by the i-th investor with
∑

i ϕi = 1,

and S ∈ RN is the supply of shares. Using (A10) we get

(A4)
∑
i

ϕi (γiΣ + Λi)
−1 (µi − P + Λix) = S.
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After rearranging∑
i

ϕi (γiΣ + Λi)
−1 (µi + Λix)− S =

∑
i

ϕi(γiΣ + Λi)
−1P.

Assume that Σ is a diagonal matrix with all entries equal to σ2. And assume that the

benchmarking penalty Λi = λiI for λi ∈ R and I an N ×N identity matrix. The market

clearing condition for stock j ∈ {1, . . . , N} is therefore

∑
i

ϕi

γiσ2 + λi

(µij + λixj)− Sj = Pj

∑
i

ϕi

γiσ2 + λi

.

The risk premium in the price is not central to the present analysis, so we set Sj = xj =

0,∀j. With this we get the following equation for the equilibrium price of security j

∑
i

ϕi

γiσ2 + λi

µij = Pj

∑
i

ϕi

γiσ2 + λi

,

from which we get

(A5) Pj =

(∑
i

ϕi

γiσ2 + λi

)−1∑
i

ϕi

γiσ2 + λi

µij.

Since the supply of shares and the benchmark target xj are zero, there is no risk discount

in the price and Pj is simply the weighted average investor belief about future payoff of

stock j.

We now specialize the equilibrium to three types of investors. A fraction ϕ1 represents

non-institutional investors. These investors have γ1 = 1 (without loss of generality) and

face no benchmarking constraints on portfolio holdings so λ1 = 0. A fraction ϕ2 of

investors are financial intermediaries. They are less risk-averse than non-institutional

investors, so γ2 = γ < 1 and face no benchmarking restrictions, so λ2 = 0. Shin (2019)

shows that a VaR constraint leads to an equivalent optimization problem to (A1) where γ

represents the shadow cost of the VaR constraint. We can therefore interpret γ for financial

intermediaries as a measure of the degree to which they are constrained in their risk-taking

activities. Finally, passive institutional investors, or indexers, have zero risk-aversion but

face a benchmarking restriction λ3 > 1, because the i-th indexer is required by mandate

to not deviate too far away from its benchmark index x (assumed to be zero). The degree

to which the i-th investor is constrained is given by γiσ
2 + λi, so assuming σ2 ≈ 1, we
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Investor Weight Risk Aversion Benchmarking Constrained
Non-institutional ϕ1 γ1 = 1 λ1 = 0 Medium
Intermediaries ϕ2 γ2 < 1 λ2 = 0 Least
Passive ϕ3 γ3 = 0 λ3 > 1 Most

can say that intermediaries are less constrained than non-institutional investors, and non-

institutional investors are less constrained than indexers. The key features of the three

types of investors can be summarized as follows:

We now specify how each investor group updates beliefs based on news. Assume that

Ij represents good news about security j, and that µij = fi(Ij, . . . ) with ∂µij/∂Ij > 0,

where the . . . indicate that beliefs can depend on other factors besides news. We assume

that non-institutional investors and intermediaries update their beliefs in proportion to

the information content τ of news, so

∂µij

∂Ij
= f(τ) for i ∈ {1, 2},

where f(τ) ∈ (0, 1) and is increasing in τ . Furthermore, we assume that σ2 = σ2(τ) ∈
(0, 1) for i = 1, 2 and that σ2(τ) is decreasing in the information content τ of news.5

Indexers don’t update beliefs in response to news, so ∂µ3j/∂Ij = 0. As in (A1), this

reflects institutional constraints on the behavior of indexers.

Using the price from (A5) we find that the sensitivity of Pj to news is

∂Pj

∂Ij
=

ϕ1

σ2(τ)
+ ϕ2

γ2σ2(τ)

ϕ1

σ2(τ)
+ ϕ2

γ2σ2(τ)
+ ϕ3

λ3

f (τ) .

Note that the denominator is positive, and that ϕ1 = 1−ϕ2−ϕ3. Making this substitution

and multiplying by σ2 we find:

(A6)

∂Pj

∂Ij
=

1− ϕ2 − ϕ3 +
ϕ2

γ2

1− ϕ2 − ϕ3 +
ϕ2

γ2
+ ϕ3

λ3
σ2 (τ)

f (τ) ,

=
1 + 1−γ2

γ2
ϕ2 − ϕ3

1 + 1−γ2
γ2

ϕ2 +
σ2(τ)−λ3

λ3
ϕ3

f(τ).

The following properties hold in equilibrium:

5This would happen under normality if news Ij consisted of the dividend plus noise, and τ was the
precision of the noise term – though this argument ignores the equilibrium effect of the impact of precision
on the informativeness of prices. But I think it would still go through even in equilibrium.
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Proposition 1. Price sensitivity to news increases with more intermediaries and de-

creases with more passive investors.

Proposition 2. Price sensitivity to news increases when intermediaries are less con-

strained, i.e., have lower γ.

Proposition 3. Price sensitivity to news increases as the information content of news

grows.

To check Proposition 3, observe that higher τ increases f(τ) and decreases σ2(τ) and

both effects tend to increase ∂Pj/∂Ij.

To check Proposition 2, note that in the top expression in (A6) both the numerator

and denominator increase by the same amount when γ falls; since both are positive and

the numerator is smaller than the denominator, this increases the price sensitivity, i.e.,

for x, y > 0, d
dx
( x
x+y

) = 1
x+y

− x
(x+y)2

= 1
x+y

(1− x
x+y

) > 0.

In what follows, we drop f(τ) from (A6) since it’s positive and does not affect the sign

of the derivatives. To check Proposition 1, note that:

∂

∂ϕ2

(
∂Pj

∂Ij

)
=

1−γ2
γ2

1 + 1−γ
γ
ϕ2 +

σ2−λ
λ

ϕ3

−
1 + 1−γ2

γ2
ϕ2 − ϕ3

(1 + 1−γ2
γ2

ϕ2 +
σ2(τ)−λ3

λ3
ϕ3)2

1− γ2
γ2

.

Since the denominator is positive, the sign of this is the same as the sign of(
1 +

1− γ2
γ2

ϕ2 +
σ2 (τ)− λ3

λ3

ϕ3

)
−
(
1 +

1− γ2
γ2

ϕ2 − ϕ3

)
= σ2 (τ)ϕ3 > 0.

To check that more indexers decrease the price sensitivity to news, note that

∂

∂ϕ3

(
∂Pj

∂Ij

)
= − 1

1 + 1−γ2
γ2

ϕ2 +
σ2(τ)−λ3

λ3
ϕ3

−
1 + 1−γ2

γ2
ϕ2 − ϕ3

(1 + 1−γ2
γ2

ϕ2 +
σ2(τ)−λ3

λ3
ϕ3)2

σ2 (τ)− λ3

λ3

.

Since the denominator is positive, the sign of this is the same as the sign of

−
(
1 +

1− γ2
γ2

ϕ2 +
σ2 (τ)− λ3

λ3

ϕ3

)
−
(
1 +

1− γ2
γ2

ϕ2 − ϕ3

)
σ2 (τ)− λ3

λ3

.

Since λ3 > 1 and σ2 (τ) < 1 the sign of the second term above is positive and the entire

expression is therefore less than

−
(
1 +

1− γ2
γ2

ϕ2 +
σ2 (τ)− λ3

λ3

ϕ3

)
+

(
1 +

1− γ2
γ2

ϕ2 − ϕ3

)
= −σ2 (τ)ϕ3 < 0.
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A3.B Two-period model

We extend the model to two periods, which allows us to make predictions on price under-

reaction to news, conditional on investor composition, intermediary constraints, and news

informativeness. The key feature of the two-period model is based on Hong and Stein

(1999, HS): we assume that non-institutional investors and intermediaries behave like

newswatchers in HS: they “formulate their asset demands based on the static-optimization

notion that they buy and hold until the liquidating dividend” and “they do not condition

on current or past prices.” HS refer to this as a “Walrasian equilibrium with private valu-

ations,” as opposed to a rational expectations equilibrium. HS motivate this behavior as

a simple form of bounded rationality (see their discussion on page 2149). This assump-

tion can be thought of as a reduced form version Sims’ (2011) rational inattention. Since

we are focused on price responses to public news over a short time interval, we are not

concerned about overreaction, and so do not introduce HS’s momentum traders.

We assume that a fraction θ ∈ [0, 1] of the non-institutional and intermediary sector

pays attention to stock j in period 0, and the remaining fraction 1 − θ pays attention

to the stock in period 1. As in HS, time 0 investors remain in the market in period 1.

Investors who pay attention to stock j receive the same public signal Ij. We interpret

θ as the technological capacity constraint faced by investors. As technology improves,

investors are able to follow more stocks, and with respect to stock j, a greater fraction

of investors is able to follow the stock in period 0. Stock j pays a liquidating dividend

in period 2. Our newswatchers optimize objective function (A1) using their information

Ij with respect to the liquidating dividend. As in HS, they do not condition on prices.

The 1 − θ fraction of investors who do not follow stock j in period 0 simply stay out of

the market for j until period 1 – they do not have capacity to devote to following stock

j in period 0. The indexers behave as before. We assume µ1j = µ2j = µ and µ3j = 0 for

simplicity.

Given our assumptions, the period 1 price is the same as the price in the one-period

model, and is given by (A5), i.e.,

P1j =

ϕ1

σ2µ+ ϕ2

γ2σ2µ
ϕ1

σ2 +
ϕ2

γ2σ2 +
ϕ3

λ3

=
ϕ1µ+ ϕ2

γ2
µ

ϕ1 +
ϕ2

γ2
+ ϕ3

λ3
σ2

.

The period 1 price reflects all information. Given the HS assumptions, the period 0

equilibrium is identical to the period 1 equilibrium, except the fraction of non-institutional
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and intermediary investors is given by θϕ1 and θϕ2. The period 0 price is therefore

(A7) P0j =
ϕ1µ+ ϕ2

γ2
µ

ϕ1 +
ϕ2

γ2
+ ϕ3

λ3

σ2

θ

.

The HS newswatcher assumption leads to a very tractable equilibrium, and, as in their

paper, there is price underreaction. To see this note that

(A8) P0j = α(θ)P1j and P1j − P0j = (1− α(θ))P1j

where

α(θ) =
ϕ1 +

ϕ2

γ2
+ ϕ3

λ3
σ2

ϕ1 +
ϕ2

γ2
+ ϕ3

λ3

σ2

θ

and α(θ) ∈ [0, 1].

Note that α(θ) is increasing in θ. Therefore, when news Ij arrives, the period 0 price

reaction will be smaller than the full (period 1) price reaction, and the price change from

period 0 to period 1, P1j − P0j, will be nonzero and will go in the same direction as the

period 0 price response:
∂

∂Ij
(P1j − P0j) > 0.

In light of (A8) the following proposition is immediate:

Proposition 4. Propositions 1, 2, and 3 all apply to the period 0 price response to news

and to the period 1 return P1j − P0j in response to news.

Finally, if technology improves, i.e., as θ increases, the model makes an unambiguous

prediction:

Proposition 5. As θ increases, the period 0 price response to news ∂P0j/∂Ij increases,

and the period 1 price change in response to news ∂(P1j − P0j)/∂Ij decreases.

This follows from (A8) and the fact that α(θ) is increasing in θ.

Of course, allowing the period 1 investors to participate in period 0 trading while

conditioning on the period 0 price of j, or allowing for arbitrageurs who can profit from

understanding the dynamics of the model, would make our results less stark. But the

main intuition of price underreaction and its dependence on technological constraints

would remain.
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A3.B.1 Period 0 and 1 holdings by intermediaries

From (A10), the demands of the three investor types for stock j are

w1j =
1

σ2
(µj − Pj)

w2j =
1

γ2σ2
(µj − Pj)

w3j = − 1

λ3

Pj,

where we assume that µ1j = µ2j = µj > 0 and µ3j = 0. Market clearing thus requires

that

θϕ1w1j + θϕ2w2j + ϕ3w3j = Sj > 0.

Plugging in the above demands, Pj must satisfy

θ
ϕ1

σ2
(µj − Pj) + θ

ϕ2

γ2σ2
(µj − Pj)−

ϕ3

λ3

Pj = Sj.

Rearranging we find that

Pj =

(
θ
ϕ1

σ2
+ θ

ϕ2

γ2σ2

)(
θ
ϕ1

σ2
+ θ

ϕ2

γ2σ2
+

ϕ3

λ3

)−1

µj −
(
θ
ϕ1

σ2
+ θ

ϕ2

γ2σ2
+

ϕ3

λ3

)−1

Sj

=
θϕ1γ2λ3 + θϕ2λ3

θϕ1γ2λ3 + θϕ2λ3 + ϕ3γ2σ2
µj −

γ2σ
2λ3

θϕ1γ2λ3 + θϕ2λ3 + ϕ3γ2σ2
Sj.

The period 0 demand of the intermediary sector X2(θ) = θϕ2w2 is therefore given by

X2j(θ) = θϕ2
1

γ2σ2
(µj − Pj)

= θϕ2
1

γ2σ2

ϕ3γ2σ
2

θϕ1γ2λ3 + θϕ2λ3 + ϕ3γ2σ2
µj +

θϕ2λ3

θϕ1γ2λ3 + θϕ2λ3 + ϕ3γ2σ2
Sj

=
ϕ2ϕ3

ϕ1γ2λ3 + ϕ2λ3 + ϕ3γ2σ2/θ
µj +

ϕ2λ3

ϕ1γ2λ3 + ϕ2λ3 + ϕ3γ2σ2/θ
Sj.

Given that all quantities in X2j(θ) are positive, it is easy to see that ∂X2j(θ)/∂θ > 0,

and therefore X2j(1) − X2j(θ) > 0 for θ < 1. So the intermediary sector adds to its

holdings of stock j in period 1. Furthermore, since ∂µj/∂Ij > 0, we will have that

∂(X2j(1)−X2j(θ))/∂Ij > 0, meaning that with good news, intermediaries increase their

period 1 buying by even more.
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A4 Magnitude of the effect

A4.A Trading simulations

To assess the economic magnitude of stock price underreaction to news, we construct a

trading strategy that goes long and short, respectively, the top and bottom 20% of firms

each day based on their daily 4pm-4pm sentiment SENTi
t (defined in Section II.A). In the

base version of the strategy, the weight wbase(i, t) for stock i on day t is proportional to

that stock’s daily sentiment:

(A9) wbase(i, t) =

{
|SENTi

t|/
∑

j |SENT
j
t | for i, j ∈ longs (high sentiment),

−|SENTi
t|/
∑

j |SENT
j
t | for i, j ∈ shorts (low sentiment).

The long weights adds up to 1 and the short weights add up to -1.

The base weights lead to high turnover for the trading strategy because of the day-to-

day variability in the composition of the top and bottom 20% of stocks by sentiment. To

induce persistence in the portfolio holdings we introduce a smoothing parameter called

keep and follow a strategy similar to Ke, Kelly, and Xiu (2021):

(A10)
wuse(i, t) = keep× wbase(i, t) + (1− keep)× wuse(i, t− 1),

wuse(i, 0) = wbase(i, 0).

Lower values of keep lead to lower turnover.

We argued theoretically in Section IV and then showed empirically in this section that

the predictability of news for future returns is higher during times of high intermediary

capital, for stocks with high active ownership, and during times of high entropy. We want

to capture these interaction terms in our trading simulations. For intermediary capital,

we use the monthly capitalization ratio CRt from (4). Periods of high active ownership are

captured using ACTIVE/MARKETt, defined as the within-month mean of the within-day

means of the firm-day level ACTIVE/MARKETi,t. Our ENTROPYt variable is a rolling

average of the last three monthly entropies.

We incorporate these into our trading strategies by increasing gross position sizes

during times of high predictability. The conditioning scales wuse(t) in (A10) by

(A11) max

(
0, 1 + scale× X(m)− X̄

σX

)
where X(m) is the value of the conditioning variable in month m, the month immediately
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prior to day t, and scale ∈ {0.165, 0.33, 0.66}. The mean (X̄) and standard deviation

(σX) of the conditioning variable are computed using an expanding window of length up

to 25 years from the start of the sample to month m. The intermediary capital ratio

series starts on 1/31/1970, so even the initial observations for CRt use 25 years of data.

The ACTIVE/MARKET series starts on 1/1/1996. The ENTROPY series with a rolling

mean of 3 months starts on 6/30/1998. If there are less than 12 observations of a macro

series as of month m, then the scaling weight is set to 1. Going forward, wuse refers to the

portfolio weights scaled by the term in (A11) or scaled by 1 if there is not enough data.

The portfolio return on day t+ 1 is given by

(A12) r̃pt+1 = wuse(t)
⊤rt+1,

where wuse(t) is the vector of scaled portfolio weights on day t and rt+1 is the vector of

stock returns from day t to t + 1. Because r̃pt+1 assumes zero transaction costs, we refer

to it as the frictionless portfolio return.

To calculate portfolio turnover, we follow Ke, Kelly, and Xiu (2021) and define strategy

turnover on day t as

to(t) ≡ 1

2

n∑
i=1

|wuse(i, t)− wadj(i, t− 1)|,

where

wadj(i, t− 1) =
wuse(i, t− 1)(1 + ri,t)

1 +
∑n

i=1wuse(i, t− 1)ri,t
,

where ri,t is the return on stock i from day t−1 to t. wadj(i, t−1) reflects what wuse(i, t−1)

would become due to differences in stock returns from t − 1 to t.6 Entirely turning over

the portfolio from one day to the next (if none of the top and bottom 20% of names

overlap) results in a turnover of 2 (e.g., sell $1 of longs, buy $1 of new longs, cover $1 of

shorts, sell $1 of new shorts).

We assume that selling and then buying a stock happens at the prevailing bid-offer in

the market.7 We assume a transaction cost of 3 basis points (bps) per unit of turnover

(this is the full bid-offer spread for U.S. stock exchanges estimated by Hagströmer 2021).

For transaction cost tc, the portfolio return is given by

(A13) rpt = r̃pt − to(t)× tc,

6The difference between wuse(i, t) and wadj(i, t) is very minor in practice.
7This constrains the maximum size of the strategy. We comment further on this issue below.
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where r̃pt is the frictionless portfolio return in (A12).

Results

We run 48 versions of the trading strategy which are parameterized by:

� keep ∈ {0.33, 1},

� tc ∈ {0, 3 bps},

� Interaction variable: none, CR, ACTIVE/MARKET, ENTROPY,

� scale ∈ {0.165, 0.33, 0.66}.

Table 7 shows the daily alpha (in basis points) relative to the Fama-French (2015) five

factor model augmented with momentum for each strategy variant when scale = 0.33

(e.g., 4 means 252× 4 bps ≈ 10% annual alpha).

The first column of the table shows the results for keep = 1, tc = 0, which is the base

case, frictionless version of the strategy. Without using any conditioning variables, the

strategy generates 7.7 basis points of daily alpha, which translates to an almost 19.5%

annualized excess return. As the next two rows show, scaling up the gross size of the

strategy during times of high intermediary capital increases the daily alpha to 10.7 basis

points (27% per year) and scaling up during times of high active ownership increases

the daily alpha to 9.6 basis points. The final row shows that conditioning on entropy

does not improve the baseline, frictionless alpha (in fact daily alpha falls slightly to 7.4

basis points). All four alphas (no-interaction, CR, active share, and entropy) are highly

statistically significant as their p-values are all zero to three digits.

The second column shows the frictionless results for the keep = 0.33 strategy. The

alphas get cut roughly in half, but the economic magnitude is still high. For example, for

the keep = 0.33 and CR interaction strategy, the daily alpha of 5.4 basis points translates

to an annualized excess return of 13.6%, an economically large effect. Again all four

p-values are zero.

The impact of transaction costs is important for high turnover strategies, such as

these. For the CRt interaction results, the portfolio with keep = 1 has an average daily

turnover of 2.02 over the entire sample, while the keep = 0.33 portfolio has an average

daily turnover of 0.62. The turnover numbers for the no-interaction portfolios, as well as

for the portfolios using the other conditioning variables, are similar.

The third column introduces transaction costs of 3 bps for each round-trip trade of

the keep = 1 strategy (selling at bid and buying at ask according to equation A13). The
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daily alphas fall to about 40% of the frictionless ones but the economic magnitude remains

large and all alphas are significant at the 5% level or better. The CR interaction yields

a daily alpha of 4.7 basis points (11.8% annual), the ACTIVE/MARKET is second best

(3.8 bps), and the ENTROPY interaction now outperforms the no-interaction strategy

by 0.6 basis points per day (around 1.5% per year outperformance).

Finally, the fourth column shows the performance of strategies with keep = 0.33 and

tc = 3 bps. All alphas are significant at the 1% level or better, with the ranking from

highest to lowest being CR, active share, and entropy conditioning variables and then the

no-interaction strategy. The CR interaction alpha is 3.5 bps per day or 8.8% per year,

which is highly economically significant, even in the presence of restricted turnover and

the imposition of transaction costs.

Tables A7 and A8 of show that the above results are robust for other choices of scale

in (A11). The scale = 0.165 results (Table A7) are slightly weaker than the Table 7 ones,

and the scale = 0.66 results (Table A8) are stronger (the annualized return of the baseline

CR strategy is 34.7% per year). Strategy performance and turnover are not sensitive to

different values of scale in (A11). The alphas of all 48 tested strategies are economically

large and statistically significant.

A4.B Impulse response functions

We calculate impulse response functions to a sentiment shock using the local projection

method of Jorda (2005). We run regressions (5) and (6) in the paper with the left hand

side one-day returns or CARs on the event day t, day t + 1, t + 2, . . . , t + 40. The day

t (contemporaneous) regression uses the 4pm–4pm sentiment, and excluded the contem-

poraneous abnormal return CAR0,0 as an explanatory variable. We calculate the impulse

response as the value of a hypothetical $100 portfolio invested for each day at that day’s

forecasted incremental return due to a unit sentiment shock. This assumes the senti-

ment shock under consideration has been orthogonalized to all other contemporaneous

influences.

To calculate the cumulative baseline response for day h we add up all single day SENT

coefficients up to and including t+h, scaled by a one standard deviation sentiment shock.8

Standard errors are calculated assuming each one-day return is independent, and using

the one-day return standard errors (clustered by time) from the panel regressions in (5)

and (6).

8Calculating the geometric return, i.e. 100× (1+E[rt])× (1+E[rt+1])×· · · yields an almost identical
result.
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To calculate the price response to a sentiment shock conditional on a one standard

deviation increase in intermediary capital or decrease in passive ownership we add the

SENT×CAPACITY or subtract the SENT×OWNERSHIP interaction, scaled by a one

standard deviation change in SENT times a one standard deviation change in the inter-

acting variable, to each day’s forecasted marginal return. For calculating standard errors

for conditional responses, we assume the marginal SENT response and the interacted

response are independent.

Figure A4 shows the impulse response function of future excess returns (panel A)

and CARs (panel B) to a one standard deviation sentiment shock conditional on average

passive/total ownership (solid line). Also shown is the impulse response conditional on a

one standard deviation decrease in passive/total ownership (dashed line). Figure 6 in the

main body of the paper shows the responses to sentiment and sentiment interacted with

intermediary capacity.

A5 Alternative news sources

A5.A Comparing the coverage by different news sources

Figure A6 shows the differences in the composition of firms covered by the Dow Jones, Wall

Street Journal, Financial Times, and Thomson Reuters. Figure A7 shows the differences

in industry coverage across these news sources.

To plot the Average Market Cap in Figure A6, we compute the average of the log-

transformed market capitalization of each company in each quarter. The average is

weighted by the number of days where the company has at least one article in each

of the four news sources. For the quarterly number of firm-day observations in Figure A6,

we count the total number of company-day observations where the company has at least

one article in one day in each of the four news sources for each quarter. For the remaining

graphs in Figure A6, we fit the Fama-French (2015) five-factor model augmented with

momentum for each company using daily returns over the full sample. For each news

source, we calculate the average of their R-squareds and each of the coefficients in each

quarter, weighted by the number of days where the company has at least one article in

the given news source.

For Figure A7, we count two sets of company-day observations for each of the four

news sources. First, we count the number of company-day observations as described in the

quarterly firm-day observations in Figure A6. Second, we count the number of company-
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day observations in a given quarter about companies in each of the 12 industries based

on classification from Ken French’s website. We then plot the fraction of articles about

companies in each industry by dividing the second count (company-day observations in

a sector) by the first count (total company-day observations) for each of the four news

sources.

A6 Possible Mechanisms and Robustness Checks

This section discusses possible mechanisms leading to underreaction, and it describes

robustness checks based on alternative explanations.

A6.A Possible Mechanisms for Underreaction

Our hypothesis development in Section IV uses Hong and Stein’s (1999) newswatchers as

a simple mechanism to generate investor underreaction, which then allows us to make pre-

dictions about the impact of investor composition and news informativeness on same-day

and next-day price responses to news events. One behavioral explanation that is consis-

tent with our empirical findings is that information diffuses slowly through a population

of even informed agents.9

Another mechanism for underreaction involves overconfident investors and arbitrageurs.

Daniel, Hirshleifer, and Subrahmanyam (1998) show that investor overconfidence and self-

attribution bias (believing confirming signals, but ignoring disconfirming ones) can lead

to short-term momentum in equilibrium.10 The model of Kyle, Obizhaeva, and Wang

(2018) is also noteworthy as it can generate autocorrelated returns from the perspective

of an uninformed econometrician. That model relies on a form of disagreement in which

all traders, who know their trades incur price impact, believe that their information is

more precise than that of other traders. Interestingly, the return autocorrelation in Kyle,

Obizhaeva, and Wang (2018) is stronger when market liquidity is greater, which aligns

9Hong, Lim, and Stein (2000) explain momentum via the slow diffusion of information. By exploiting
differences in institutional ownership of Chinese A and B shares, Chui, Titman, and Subrahmanyam
(2021) show “momentum is caused by informed investors who underreact to fundamental signals.”

10A large literature offers models of investor underreaction and overreaction grounded in patterns of
investor psychology. Underreaction and overreaction also result from overconfidence in Odean (1998)
and Baker and Stein (2004). In Barberis, Shleifer, and Vishny (1998), investor conservatism leads to
underreaction, and a representative heuristic leads to overreaction. The empirical evidence is mixed.
For example, De Bondt and Thaler (1985) and Chopra, Lakonishok, and Ritter (1992) find evidence
of investor overreaction. Jegadeesh and Titman (2001) find support for a behavioral explanation of
momentum.
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with our finding of a greater underreaction in periods of higher risk-bearing capacity.

Daniel, Klos, and Rottke (2021) develop a model where short-term momentum and long-

term reversals arise from the interaction of overconfident investors with Hong and Stein

(1999) newswatchers, thus combining the two behavioral mechanisms.

Periods of high intermediary capacity should be periods when large institutional in-

vestors are broadly active in markets. When a large institution observes news that it

interprets as a surprisingly positive signal about a stock’s prospects, it will buy that stock

on the day of the news article’s arrival. There is a large literature set in partial equilib-

rium on the optimal execution strategy for a trader who incurs price impact (Bertsimas

and Lo 1998; Almgren and Chriss 2000; He and Mamaysky 2005; Obizhaeva and Wang

2012).11 In all cases this involves splitting up a large trade into smaller components and

trading the large order over time. If it is acting optimally, the large investor will split its

order and trade on subsequent days after the news day. In a partial equilibrium setting,

such order-splitting will create a contemporaneous price impact, as well as price moves in

the same direction in subsequent days, thus leading to price underreaction. The greater

the number of institutional investors who respond in the same way to the same piece of

news, the larger will be the price response to contemporaneous news, and the larger will

be the price response to lagged news.12

Extending this partial equilibrium logic to general equilibrium requires some market

friction. In a frictionless market, rational arbitrageurs would realize the institution is

executing a large trade in response to public news, and would trade in the same direction

11There is ample empirical and anecdotal evidence of strategic trading by institutional investors con-
cerned about revealing information through their trades. Sias and Starks (1997) find that “stealth
trading” by institutions contributes to serial correlation in returns. Keim and Madhavan (1995) find that
more than 40% of institutional trades take more than one day, and Chan and Lakonishok (1995) find
that over half of institutional trades are split over more than four days. Using more recent data from
a large asset management firm, Frazzini, Israel, and Moskowitz (2018) report a mean target execution
time of 2.7 days. Di Mascio, Lines, and Naik (2017), with detailed data on the trading activity of some
institutional investors, report an average order execution time of 2 days, with a standard deviation of
almost 3 days, suggesting a right-skewed distribution. Using the ANcerno trade execution data Brière et
al. (2020) estimate that the average time to execute an institutional “parent” order (which is typically
split into multiple “child” orders) varied between 1.5 days and 3 days between 1999 and 2015. Campbell,
Ramadorai, and Schwartz (2009) report serial correlation in institutional trades consistent with strategic
trading through order-splitting.

12Using ANcerno order data, Huang et al. (2020) find that institutional investors respond to news
primarily within the first 30 minutes following the release of the news. However, they also find (in their
Figure 3) abnormal trading consistent with an underreaction for a week following the news release. It
is possible that the institutions most concerned with trading strategically are less likely to report their
trades to ANcerno. Based on data from a large asset manager, Frazzini et al. (2018) report an average
of 62 executed child orders for every parent order, typically executed within three days. This pattern is
consistent with an underreaction driven by strategic trading.
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thereby accelerating the price response. One way to avoid the acceleration of price dis-

covery is to assume arbitrageurs are capital constrained relative to the large institutional

trading demand (Shleifer and Vishny 1997; Gromb and Vayanos 2010).

We believe that strategic trading by large, and potentially imperfectly rational, in-

stitutional investors is an important part of the story of the time variation in the news-

returns relationship. A clean empirical demonstration of this hypothesis would require

high-frequency investor trading data, which we do not have. A clean theoretical demon-

stration of this mechanism would require a model that produces predictable price impact

from public signals that does not get arbitraged away. Kyle et al. (2018) comes closest.

We hope future research will make headway in both of these areas.

A6.B Robustness Checks and Other Channels

In Sections V and VI we presented evidence consistent with our hypotheses that variation

in intermediary capital, passive ownership, and news informativeness robustly impacts

the news-returns relationship. However, our evidence argues against purely technological

drivers of the relationship because price responses to contemporaneous and lagged news

generally increase or decrease together, which is the opposite of the implication from the

technological constraint channel. Two other potential drivers for stock underreaction to

news are short-sale constraints (Miller 1977; Asquith, Pathak, and Ritter 2005; Nagel

2005) and serial correlation in news flow (Wang, Zhang, and Zhu 2018; Huang, Tan, and

Wermers 2020). We analyze these two channels and find that they cannot explain our

main findings. To conserve space in the main paper, these results are presented in this

Internet Appendix: Section A7.B shows that short-sale constraints alone cannot fully

explain stock price underreaction, and Section A7.C rules out serial correlation in news

flow as the channel for underreaction.

We perform an extensive set of additional robustness checks. Section A7.D shows

the results of regressions in (2) for one- and ten-day ahead returns hold over different

subperiods of the data. Section A7.E verifies that the ownership results in Table 5 are

not driven by outliers. In Section A7.F we check whether earnings announcements impact

our results. Section A7.G checks whether the effect of sentiment on future returns can

be explained by either idiosyncratic or systematic volatility. Finally, Section A7.H checks

whether the effects of intermediary capital, ownership, and entropy on the news-returns

relationship simply reflects economic uncertainty, as captured by the VIX. In all cases, we

conclude that our main results are not explained away by these additional considerations.
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A7 Further robustness checks

A7.A Earnings forecastability by news

Tetlock, Saar-Tsechansky, and Macskassy (2008, TSM) argue that news informativeness

can be measured by the degree to which earnings surprises are forecastable by lagged

news sentiment. We use this insight as a check of robustness of entropy as an indicator

of news informativeness. As in TSM, we use two measures of earnings surprise: stan-

dardized unexpected earnings (SUE) and standardized analysts’ forecast errors (SAFE).

Our construction of SUE is explained in Section II.B. We compute standardized ana-

lysts’ forecast errors (SAFE) as the difference between actual earnings per share and the

median of analyst forecasts made within the [−30,−3] trading day window prior to the

earnings announcement, divided by the standard deviation of unexpected earnings. We

use a [−30,−3] trading day window to avoid stale analyst forecasts and a potentially

inaccurate earnings announcement date. We also include analyst forecast revisions and

forecast dispersion as controls. Forecast revision is the sum of changes in the median

analyst’s forecast of earnings-per-share (EPS) scaled by the stock price at the end of the

prior month, with the sum taken from the prior earnings announcement to the current

one. Forecast dispersion is the standard deviation of EPS forecasts (either confirmed or

revised) from the prior earnings announcement date to the current one, scaled by the

same σq used to calculate SUE.13 We winsorize SUE and SAFE at the 5% level for the

earnings regressions, as we winsorize forecast dispersion and forecast revisions at the 1%

level.14

Figure A8 plots the quarterly cross-sectional standard deviations of SUE and SAFE

over time. The figure shows considerable time variation in these measures, indicating time

variation in the baseline predictability of earnings. The standard deviation of earnings

surprises peaks around the time of the global financial crisis.15 Table A9 shows summary

13Not using a three trading day lag with regard to forecast revisions and dispersion is conservative
because it means our sentiment measure is lagged relative to the controls.

14Winsorization at the X% level means setting all observations above (below) the 100 − X/2 (X/2)
percentile to that percentile’s value.

15The spike in both series in 1Q2018 is due to the very low number of observations we have for that
quarter. The spike in the cross-sectional standard deviation of SUE in 4Q2017 is due to the recognition
of large, one-time gains (losses) on deferred tax liabilities (assets) as a result of the Tax Cut and Jobs
Act of 2017. For example, in their 2017 Annual Report, the CME Group said that “2017 net income
included a $2.6 billion net income tax benefit due to recognition of a reduction in deferred tax liabilities
as a result of the Tax Cut and Jobs Act of 2017.” This gain was recognized in their 4Q2017 earnings.
In 4Q2017, the standard deviation of SAFE shows no commensurate increase, as analyst expectations
already incorporated these effects. Excluding 4Q2017 and 1Q2018 from our sample does not meaningfully
affect our results in Table A10 (discussed below), as Table A11 shows. Also, the results in Figure A9
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statistics of the firm-quarter earnings regression variables.

For our earnings regressions, we calculate news sentiment in the month prior to the

earnings release. More specifically, our news sentiment measure is the average of the sen-

timent scores of individual articles mentioning company j within a [−30,−3] trading day

window prior to the earnings announcement date t, weighted by the number of words in

each article.16 We lag the sentiment window by three days because of potential uncer-

tainty as to the accuracy of the earnings announcement date.17 While an earnings event

on trading day t will enter our sample only if company j was a member of the S&P500

index on day t, we will use articles about j in the [t− 30, t− 3] trading day window even

if the company was not a member of the S&P500 on those days, as long as the articles

satisfy the ≤ 7 RICs and ≥ 25 word requirements.18 Our return controls in the earnings

regressions are from trading day t− 2 and the [t− 30, t− 3] trading day window prior to

the earnings announcement date t. Our other control variables are from the month prior

to the earnings announcement month.

Our earnings regressions take the form

(A14) SUEi
t+1 or SAFEi

t+1 = s0 × SENTi
t + β′X i

t + ϵit,

using quarterly data. The sentiment measure SENTi
t is stock i’s average sentiment in

the month preceding the announcement date of quarter t + 1 earnings, as described in

Section II. We use the same controls X i
t in both regressions, except that we include lagged

SUE (but not lagged SAFE) in the SUE regression, and we include lagged SAFE (but

not lagged SUE) in the SAFE regression. The controls are the most recently available

observations in the month prior to the announcement date of quarter t+1 earnings. The

other controls and their summary statistics are shown in Table A9. Standard errors for

the earnings regressions are clustered by quarter.

Table A10 summarizes the results of this analysis.19 The table reports the SENTi
t

coefficient s0 for the SUE and SAFE regressions for the same time periods we used in

our return regressions. First, the results confirm that for the full time period and in

(discussed in Section V.C) are not impacted by the exclusion of these quarters.
16We also ran the analysis in Section V.C using an equally-weighted [−30,−3] trading day news senti-

ment measure. The results were qualitatively similar. We use the word-weighting to be consistent with
TSM.

17TSM point out that “Compustat earnings announcement dates may not be exact.” Though we use
announcement dates from I/B/E/S we follow the TSM convention to be conservative.

18Restricting the analysis to articles only on days when company j was a member of the S&P500 index
does not change the results.

19Table A12 of the shows the complete full-sample regression results.
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most subperiods, sentiment is a significant predictor of earnings, and the fact that SAFE

is forecastable by lagged sentiment indicates that analysts do not fully incorporate the

information in news sentiment into their forecasts.20 The informativeness of news, as

measured by the magnitudes and significance of the coefficients in Table A10, has varied

over time. There is little evidence of either an upward or downward secular trend in the

s0 estimates.

A7.A.1 Annual entropy analysis

Our basic mode of analysis is to compare the sentiment coefficient in annual regressions

of one-day abnormal returns – for CAR1,1 in equation (2) and for CAR0,0 in equation

(3) – against an annual measure of news informativeness.21 Panel A of Figure A9 shows

the s coefficient from an annual regression of CAR0,0 on contemporaneous sentiment and

control variables plotted against the average entropy of all articles that appeared in that

year. There is an economically and statistically significant relationship between average

article informativeness and the magnitude of the contemporaneous return response to

news. This is strongly supportive of the news information hypothesis.

That more informative news flow has a larger contemporaneous price effect is not

surprising. But how does this relate to stock underreaction to news? Sims (2003) and a

large subsequent literature propose that investors have a limited capacity to process in-

formation. This information capacity constraint should become more binding when there

is more information to process. With a more binding constraint, market participants take

longer to react to value-relevant news, and stock prices should therefore react more to

lagged news during high information periods. Panel B of Figure A9 shows the CAR0,0

sentiment coefficient from Panel A, but this time plotted against the sentiment coefficient

from the CAR1,1 regression on lagged sentiment from (2). Years when prices have rela-

tively large reactions to one-day lagged news are also years when stock prices are very

responsive to contemporaneous news. This is indirect supportive of the limited capacity

hypothesis.

Panel C of Figure A9 offers further evidence for the hypothesis. It shows the sentiment

coefficients from annual CAR1,1 regressions plotted against annual average entropy. There

is an economically and statistically significant relationship between the tendency of stocks

to underreact to news (and thus for returns to load positively on one-day lagged news) and

20Prior work has found evidence for both underreaction and overreaction to news by analysts; see
Abarbanell and Bernard (1992) and Easterwood and Nutt (1999).

21The results for CAR1,10 are qualitatively similar to the results for CAR1,1.
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our entropy measure of informativeness. In time periods of more informative news flow,

stocks have stronger reactions to contemporaneous news and also have stronger reactions

to lagged news.

A7.A.2 Annual entropy analysis and earnings forecastability

As a robustness check of entropy as a measure of news informativeness, Panel D of Fig-

ure A9 shows the s0 coefficient from annual versions of the SUE regression in (A14) plotted

against annual average entropy. The two series are highly correlated, supporting our in-

terpretation of both as measures of news informativeness.22 Panel E shows the annual

CAR0,0 sensitivity to contemporaneous news plotted against the annual SUE-sentiment

coefficient s0 from (A14). In years when news is more informative about earnings sur-

prises, stock prices have a stronger reaction to contemporaneous news. Together, Panels

D and E support our interpretation that both entropy and the earnings coefficient s0 from

(A14) proxy for the information content of news.

To test whether news-earnings informativeness and the degree of stock-news under-

reaction are related, Panel F plots the sentiment coefficient from the CAR1,1 regression

in (2) against the sentiment coefficient s0 from the earnings regression in (A14). There

is no relationship between the informativeness of news for earnings and the degree of

stock-news underreaction. Apparently, the portion of news that is informative about fu-

ture earnings gets quickly absorbed into prices (Panel E) and there is little left for future

prices to react to (Panel F). The correlation of entropy and s0 (Panel D) suggests that

entropy captures components of news flow that are relevant for near-term earnings. But

entropy also captures other components of news flow, and these latter components seem

to be related to price underreaction to news. A better understanding of the components

of news flow is an interesting area for future study; Glasserman et al. (2020) is a step in

this direction.

A7.B Short-selling constraints

When a company experiences surprisingly bad news, some market participants may short

its stock, anticipating and contributing to a decline in the stock price. However, in a

mechanism described by Miller (1977), they may not be able to sell short the desired

amount of stock if doing so is costly, and this constraint may slow the process by which

bad news gets incorporated in the stock price, causing an underreaction. If short-sale

22The annual SAFE s0 coefficient is also positively correlated with annual average entropy.
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constraints fully explain the underreaction, we should (1) observe more underreaction in

stocks with more binding short-sale constraints, and (2) only observe underreaction when

bad news comes out. Since short-sale constraints are plausibly related to intermediary

capital and to the presence of institutional owners in a stock, such constraints are a

tempting explanation for our finding of a systematic relationship between intermediary

capital and institutional ownership and underreaction.

To test these two hypotheses, we group stocks by the tightness of their short-sale

constraints and the tone of the news, then examine which group exhibits more under-

reaction. We use measures of short interest and institutional ownership to proxy for

the short-sale constraints. Asquith, Pathak and Ritter (2005) posit that short interest

captures the short-sale demand, and institutional ownership is a proxy for the supply

of lendable shares. Stocks with the highest short interest and the lowest institutional

ownership will have the most binding short-sale constraints. The short interest variable

(SI) is defined in Section II.B. For institutional ownership, we use the residual measure

(RI) introduced by Nagel (2005), which adjusts for size. We first perform a logit trans-

formation on the institutional ownership variable (IO) from Section II.B. Then for each

quarter, we regress the transformed variable on log market cap and squared log market

cap. The RI measure is defined as the residual from this regression. Nagel (2005) argues

that, because institutional ownership and firm size are highly correlated, sorting on IO is

akin to sorting on size. To capture the effect of IO on short-sale constraints, it is therefore

necessary to take out the firm size effect.23

The first hypothesis implies that stocks with higher SI and lower RI should exhibit

more underreaction. So we first sort stocks by SI and RI. Specifically, for each month,

we obtain the median SI and the median RI across all stock-day observations within that

month. Using these cutoffs, we double sort the stocks by SI and RI independently. In each

bucket, we run the main specification in equation (2). We are interested in the coefficient

s, which captures the stock price underreaction to news.

Table A13 panel A shows the coefficient estimates. We focus on the responses of

cumulative abnormal returns, though the excess return results are similar. Over both the

one-day horizon and the ten-day horizon, stocks with high SI and high RI exhibit the

largest magnitude of underreaction, and the underreaction is highly significant at the 1%

level. These stocks have less binding short-sale constraints than those with high SI and

low RI, yet they show more underreaction. In fact, low SI and low RI stocks, again not

23In unreported results, we use IO instead of RI in the double and triple sorts below, and also try
dependent sorts instead of independent sorts. The results remain qualitatively the same.
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the short-sale constrained group, also show more underreaction than the high SI and low

RI ones. This contradicts the first prediction of the short-sale constraint story.

We then test the second prediction on the asymmetric response to good news versus

bad news. To that end, we obtain the median sentiment, across all stock-day observations

within a month. Using this sentiment cutoff and the SI and RI cutoffs from above, we

triple sort stocks by sentiment, SI, and RI independently, and run the main specification

in equation (2) for each bucket. In Table A14, panel A shows the coefficient estimates

for the low sentiment buckets, and panel B shows the results for the the high sentiment

buckets.

Over a one-day horizon, we observe a highly significant coefficient of 0.976 for cumu-

lative abnormal returns in the low sentiment, high SI, low RI bucket, which is the bucket

with the most binding short-sale constraint, as well as bad news. This is consistent with

the prediction that stocks with tight short-sale constraints underreact to bad news, but

not to good news. But we also see evidence of underreaction in the low sentiment, low

SI, low RI grouping, and this effect is unlikely to be caused by short-sale constraints since

these stocks are not heavily shorted.

Furthermore, the triple sort results are not robust to different return horizons. At the

ten-day horizon, we observe the strongest CAR1,10 response in the high sentiment, high SI,

high RI bucket, with a coefficient of 4.149 (significant at the 10% level). And we observe

a similar response in the low sentiment, high SI, high RI bucket, which is not short-sale

constrained. For other groups where short sale constraints are most binding (those with

high SI and low RI), we do not observe significant underreaction nor asymmetric responses

across different news tone. These results argue against the second hypothesis.

A7.C Serial correlation of news flow

Market participants may underreact to news because they do not fully understand the

data generating process. In this section, we consider a particular aspect of the data

generating process – the autocorrelation of news. Wang, Zhang, and Zhu (2018) docu-

ment news sentiment momentum at a monthly frequency, and Huang, Tan, and Wermers

(2020) show that news tone is highly persistent within-day and across consecutive days.

Suppose market participants are unaware of this positive autocorrelation and simply as-

sume independence in news tone. Investors will then respond to today’s news unaware

that tomorrow’s news will likely have a similar tone. When tomorrow’s news arrives it

will surprise investors and cause a stock price reaction, even though this should have

been forecastable using news from today. There will appear to be “underreaction” of
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prices to news, but this underreaction will operate entirely through the forecastability of

tomorrow’s news by today’s news. We refer to this as the news autocorrelation hypothesis.

To test this hypothesis, we start from the following two panel regressions,

(A15)
Y i
t,u,v = s0 × SENTi

t + s1 × SENTi
t × ξit + s2 × ξit + γ ′X i

t + εit,u,v,

SENTi
t,u,v = β0 × SENTi

t + β1 × SENTi
t × ξit + β2 × ξit + δ′X i

t + ηit+1,

where Y i
t,u,v is the excess or cumulative abnormal returns from day t+u to t+v, SENTi

t,u,v

is the average sentiment from day t+u to t+v, ξit is either CAPACITYt or OWNERSHIPi
t,

and Xt is a vector of controls. With this notation, SENTi
t is the same as SENTi

t,0,0. The

β0 coefficient in (A15) is roughly 0.25 for one-day ahead sentiment and 0.18 for ten-day

ahead sentiment, and is highly significant in both cases (see Table A15). We therefore

would like to understand whether this predictability in news sentiment is responsible for

the predictability in price underreaction.

If the predictability of Y i
t,u,v results from the predictability of SENTi

t,u,v, then s0 should

be a multiple of β0, and s1 should be the same multiple of β1. To see this, consider a

return process where

(A16) Y i
t,u,v = a+ b× SENTi

t,u,v + eit,u,v,

where the noise term is independent of SENTi
t,u,v and all time t information. Then the

top equation in (A15) would follow from the sentiment process in the bottom equation.24

Given (A16), news autocorrelation fully explains stock price underreaction, and thus the

ratios of estimated coefficients ŝ0/ŝ1 and β̂0/β̂1 should be close to each other. In fact, this

test has power against more general specifications than shown in (A16).

With θ̂ = (ŝ0, ŝ1, β̂0, β̂1), we thus arrive at the test statistic

g(θ̂) ≡ ŝ0
ŝ1

− β̂0

β̂1

.

Under the news autocorrelation hypothesis, g(θ̂)
p−→ 0. If the ratios ŝ0/ŝ1 and β̂0/β̂1

are far from each other, then we can reject this hypothesis, and thus conclude that news

autocorrelation does not fully explain the stock price underreaction.

Panel A of Table A16 shows the test statistics and the simulated p-values for the

above regressions when ξit equals intermediary capacity. The details of the simulation are

24See Section A7.C.1 for a precise derivation.
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discussed in Section A7.C.2. Across different combinations of the CAR variables and the

intermediary capacity measures, the test statistics are always significant at the 5% level.

Hence, we can reject the null hypothesis that news autocorrelation is the only channel

through which stock prices underreact to news. In Panel B of Table A16, we set ξit equal

to our mutual fund ownership variables from Section V.B and redo the analysis. We reject

the null for ten-day cumulative abnormal returns for all three ownership variables, and

we reject the null hypothesis for one-day returns for the PASSIVE/MARKET ownership

measure, and for ACTIVE/MARKET measure for CAR (the one CAR non-rejection has

a p-value of 0.1077).

These results indicate that news autocorrelation and market participants’ lack of

awareness of this correlation do not fully explain the dependence of stock price underre-

action on our intermediary and ownership interaction variables.

A7.C.1 Deriving the test statistic

We provide a formal derivation of the test statistic in Section A7.C. We start from a

generic setting and derive a general argument, then apply the results to our setting.

Consider the following generic data generating process:

Y = θW + ξ(A17)

W = β′Z + η(A18)

Equations (A17) and (A18) imply that

Y = s′Z + ε, s = θβ, ε = θη + ξ(A19)

In what follows, assume that E [η|Z] = 0, θ ∈ R,β ∈ Rk, k ≥ 2.

We want to test the null hypothesis H0 : E [ξ|Z] = 0. The null hypothesis says that Z

affects Y only through W , there are no other channels through which Z could affect Y .

Under H0 and given the assumption E [η|Z] = 0, we have E [ε|Z] = 0. Let ŝ and β̂ denote

the consistent estimates of s and β from OLS regressions (A19) and (A18), respectively.

Then

ŝ
p−→ s = Var (Z)−1Cov (Z, Y ) = θβ

β̂
p−→ β = Var (Z)−1Cov (Z,W )
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which implies

ŝ0
ŝ1

− β̂0

β̂1

p−→ s0
s1

− β0

β1

= 0

Hence,

H0 : E [ξ|Z] = 0 =⇒ ŝ0
ŝ1

− β̂0

β̂1

p−→ 0

If we find that ŝ0
ŝ1
− β̂0

β̂1
is far from 0, then we reject the H0 : E [ξ|Z] = 0, and we conclude

that there are other channels through which Z affects Y .

Now we map this generic setting to our paper. Y = Y i
t,u,v is the RETRF or CAR

variable over horizon [t+ u, t+ v] for stock i. W = SENTi
t+1. Z = (SENTi

t, SENT
i
t ×

CAPACITYt, CAPACITYt, (X
i
t)

′)′. If we find that ŝ0
ŝ1
− β̂0

β̂1
is far from 0, we conclude that

the news autocorrelation channel does not fully explain the stock price underreaction.

So we can run the following two regressions to obtain consistent estimates of s and β.

These two regressions correspond to equation (A19) and equation (A18), respectively.

Y i
t,u,v = s0 × SENTi

t + s1 × SENTi
t × CAPACITYt + s2 × CAPACITYt + γ ′X i

t + εit,u,v

(A20)

SENTi
t,u,v = β0 × SENTi

t + β1 × SENTi
t × CAPACITYt + β2 × CAPACITYt + δ′X i

t + ηit+1

(A21)

Let θ = (s0, s1, β0, β1)
′, θ̂ =

(
ŝ0, ŝ1, β̂0, β̂1

)′
. Define g (θ) = s0

s1
− β0

β1
. Then the test

statistic is g
(
θ̂
)
. The null hypothesis is H0 : g

(
θ̂
)

p−→ 0.

To get a sense of the persistence in the SENTi
t,u,v variable, Table A15 shows the β0

estimates from the regression in (A21).

A7.C.2 Deriving the p-value

Instead of using the Delta method to get the p-values for the test statistics,we propose

the following simulation method.25

1. For each year y, run regressions (A20) and (A21), keep the coefficient estimates(
ŝ0,y, ŝ1,y, β̂0,y, β̂1,y

)
.

25The Delta method does not work well because the test statistic is far from 0. See Table A16.
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2. Compute the Pearson correlation matrix for
(
ŝ0,y, ŝ1,y, β̂0,y, β̂1,y

)
using the annual

coefficient estimates from Step 1.

3. Run the full panel regressions (A20) and (A21), keep the coefficient estimates(
ŝ0, ŝ1, β̂0, β̂1

)
. Also keep the estimated covariance matrix of the coefficients. Let Ĉ1

denote the estimated covariance of (ŝ0, ŝ1), and Ĉ2 denote the estimated covariance

of
(
β̂0, β̂1

)
.

4. Compute the covariance between (ŝ0, ŝ1) and
(
β̂0, β̂1

)
, using the estimated correla-

tion matrix from Step 2 and the standard errors of
(
ŝ0, ŝ1, β̂0, β̂1

)
from Step 3. Let

Ĉ3 denote that covariance matrix.

5. Draw J = 1, 000, 000 observations from a multivariate normal distribution with

mean
(
ŝ0, ŝ1, β̂0,

ŝ1
ŝ0
β̂0

)
and covariance matrix

(
Ĉ1 Ĉ3

Ĉ ′
3 Ĉ2

)
. Let

(
ŝ0,j, ŝ1,j, β̂0,j, β̂1,j

)
denote the j-th draw.

6. Compute the p-value of the test statistic as the fraction of draws that satisfy∣∣gsimj − ḡsim
∣∣ > |ĝ − ḡsim|, where gsimj =

ŝ0,j
ŝ1,j

− β̂0,j

β̂1,j
, ḡsim = 1

J

∑J
j=1 g

sim
j , ĝ = ŝ0

ŝ1
− β̂0

β̂1
.

A7.D Return response to news by subperiod

We partition the data into three five-year subperiods starting in 1996, one four-year sub-

period at the end of our sample, as well as two subperiods which were classified as NBER

recessions, in light of Garcia’s (2013) finding of a changing news-returns relationship over

the business cycle. The subperiods were selected by first identifying NBER recessions,

and then splitting the remaining data into equal-sized windows. We chose subperiods

prior to running any regressions and did not change them subsequently. Table A17 shows

the results of the regression in (2) over the full sample with u = v = 1, as well as over the

different subperiods.

In Table A17, we see that the news-returns relationship was stronger in the earlier

parts of the sample, with sentiment coefficients of 1.595 (1996–2000), 1.255 (2001), and

0.861 (2002–2006).26 The predictability of returns by sentiment rises slightly during the

financial crisis period of 2007–2009 to 0.963 (significant at the 10% level), then drops

sharply to 0.244 in the post-crisis years 2010–2014, and returns to 0.733 (significant at

26Of these, only 1.255 is not significant because it represents only the 2001 recession year, and is
therefore associated with a high standard error.
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the 1% level) in the most recent time period of 2015–2018.27 The magnitude of the

underreaction in the most recent time period is similar to the full-sample coefficient of

0.884.28

Table A18 shows the results of the specification in (2) run with the original TSM

control variables augmented with our two volatility controls. Here we use share turnover

instead of illiquidity as we do in our main specification. Share turnover is defined as

trading volume divided by the number of shares outstanding. Share turnover on day t is

the average share turnover in the [t − 84, t − 21] trading day window. The inclusion of

IO, SI and log illiquidity as control variables in Table A17 slightly diminishes the role of

SENT in most subperiods. Our full-sample results in Table A18 are even closer to TSM.

Table A19 shows the results for RETRF and CAR of the ten-day ahead returns re-

gressions. Table A20 is a summary of regression (2) for one- and ten-day ahead returns

and of regression (3) for full-day and 4pm-9:30am sentiment. All four regressions are run

over the full sample and over subperiods. The top panel shows results for RETRF and the

bottom panel shows results for CAR. A brief summary of the results: there is evidence of

forecastability at the ten-day ahead horizon; the contemporaneous reactions of prices to

news are much higher than the reaction of prices to lagged news, as has been documented

in the prior literature (TSM, Heston and Sinha 2017 and Ke, Kelly, and Xiu 2021); the

results of the contemporaneous 4pm-9:30am news regressions are very similar to the re-

sults of the full-day news regressions; there is no negative relationship over the subperiods

between SENT coefficients in the lagged news regressions in (2) and the contemporaneous

news regression in (3).

A7.E Trimming ownership variables

To mitigate the concern that the ownership variable outliers discussed in Section A2.C

drive our ownership interaction results, we rerun the ownership interaction regressions in

Table 5 but using the 2.5% trimmed ownership series, and confirm that the results are

27Our finding that single-name predictability did not sharply increase in the financial crisis contrasts
with the finding in Garcia (2013) that news predictability for index returns is most pronounced during
recessions.

28Murray, Xiao and Xia (2023) examine the degree to which a recurrent neural network can forecast
stock returns using lagged returns. They examine the performance of their strategy in subperiods (e.g.,
1995-2004, 2005-2014, 2015-2019) that are similar to ours. The profitability of their strategy is high in
1995-2004 and 2015-2019, and low in the middle period 2005-2014. And the profitability in the most
recent period is not as high as in the initial period. The time variation in their forecastability results is
very close to our findings in Table A17 suggesting that the phenomena we examine may impact a broad
class of return patterns.
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qualitatively unchanged, as can be seen in Table A21.

A7.F The role of earnings announcements

TSM show that the sentiment of articles containing any word beginning with “earn”

is more strongly associated with contemporaneous returns and is a stronger predictor

of future returns than sentiment of articles that do not contain earnings-related words

(though the latter remains statistically and economically important). To ensure that our

results are not driven by articles about earnings, we run a version of the specifications in

(2) and (3) that drops all event days that take place either on earnings announcement days,

or on the trading day following the earnings announcement.29 Dropping these two-day

announcement periods reduces the number of observations in our full-sample regression

by roughly 10%.

Table A22 is the analogue of Table A20 but after the two-day announcement windows

are dropped. Table A20 shows the Table 1 results for the full sample, as well as results

by subperiods as explained in Section A7.D. The magnitudes of the contemporaneous

coefficients drop in the absence of earnings-related news, but remain economically and

statistically important. The lagged sentiment coefficients for one- and ten-day ahead

returns are roughly comparable. The impact of news on future returns hardly changes

when earnings days are excluded from the sample and, thus, earnings-related news are

not the main drivers of our results.

A7.G Controlling for volatility

Ang et al. (2006) showed that stocks with high idiosyncratic volatility earn “abysmally”

low excess returns. It is possible therefore that the reason negative sentiment forecasts

low returns is because it is associated with high idiosyncratic or systematic volatility.

We include CAR2
0,0 (idiosyncratic variance) and V IX (systematic volatility) in all our

regressions to control for this possibility. Table A23 shows the results of the specification in

(2) when we remove the volatility controls. Compared to the baseline results in Table A20,

the forecasting ability of SENT for both excess returns and CARs is basically unchanged

in the absence of the volatility controls.

29We drop both days because we are uncertain whether the earnings announcement takes place before
or after the market close on the announcement day.
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A7.H The VIX as an interaction variable

To control for the possibility that intermediary capacity, ownership, and entropy simply

proxy for the impact of investor perceptions of risk on the sentiment coefficient in (5,

6, 7), we run a specification analogous to these but use the VIX as the interaction vari-

able for sentiment. Table A24 shows these results. In all cases, the VIX has a positive

influence on the impact of sentiment on contemporaneous returns, and a negative (and

usually insignificant) influence on the impact of sentiment on future returns. These re-

sults are fundamentally different from the intermediary capacity, ownership, and entropy

interaction results in Tables 4, 5, and 6, where the impact of the interaction variable on

the sentiment coefficient has the same sign for contemporaneous and future returns. The

VIX, therefore, cannot be the underlying driver of our results.
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Fig. A1. Time series of cross-sectional ownership correlations. Within each month, this
chart shows the cross-sectional correlations of our three ownership measures. The top
panel shows the results for the full data set. The bottom panel shows the results when
excluding the bottom 2.5% of each series within each month.
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Fig. A2. This chart shows the daily number of articles with headlines containing “RE-
SEARCH ALERT-” (case insensitive match).
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Fig. A3. This figure shows the histogram of the number of RICs (Reuters company
identifier) per article. The y-axis is labeled with the number of articles in each RICs
bucket, in thousands.
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Fig. A4. Impulse response functions estimated using the local projection method of Jorda
(2005). The figure shows the baseline response (labeled baseline) of future excess returns
and cumulative abnormal returns (CARs) to a one standard deviation sentiment shock,
as well as the response conditional on a one-standard deviation decrease in passive/total
ownership (labeled interacted). The starting price level on day -1 is 100. Day 0 is the news
event day. The x-axis is in number of days. The top panel shows cumulative excess returns,
and the bottom panel shows CARs. The cumulative responses show the arithmetic sums
of one-day returns; the geometric cumulative returns are almost identical. Standard errors
are based off time-clustered panel regressions of one-day ahead future returns on lagged
sentiment, and assume independence of one-day returns across time, and between the
baseline and the conditinal responses. The shaded regions represent 2 standard error
bands around the impulse response.
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Fig. A5. Impulse response functions estimated using the local projection method of Jorda
(2005). The figure shows the baseline response (labeled baseline) of future excess returns
and cumulative abnormal returns (CARs) to a one standard deviation sentiment shock, as
well as the response conditional on a one-standard deviation increase in monthly entropy
(labeled interacted). The starting price level on day -1 is 100. Day 0 is the news event
day. The x-axis is in number of days. The top panel shows cumulative excess returns, and
the bottom panel shows CARs. The cumulative responses show the arithmetic sums of
one-day returns; the geometric cumulative returns are almost identical. Standard errors
are based off time-clustered panel regressions of one-day ahead future returns on lagged
sentiment, and assume independence of one-day returns across time, and between the
baseline and the conditinal responses. The shaded regions represent 2 standard error
bands around the impulse response.
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Fig. A6. Analysis of composition effects for Dow Jones, Wall Street Journal, Financial Times, and Reuters data sources.
The methodology to generate these graphs is explained in Section A5.A.
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Fig. A7. Analysis of industry coverage for Dow Jones, Wall Street Journal, Financial Times, and Reuters data sources.
The methodology to generate these graphs is explained in Section A5.A.
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Fig. A8. The top panel shows the quarterly cross-sectional standard deviation of SUE.
The bottom panel shows the quarterly cross-sectional standard deviation of SAFE.
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Fig. A9. Panel A shows the sentiment coefficients from annual regressions of returns
CAR0,0 on contemporaneous sentiment (eq. 3) plotted against annual average entropy.
Panel B shows the sentiment coefficients from the CAR0,0 regression plotted against the
sentiment coefficients from an annual regression of returns CAR1,1 on one-day lagged
sentiment (eq. 2). Panel C shows the CAR1,1 sentiment coefficients plotted against annual
average entropy. Panel D plots the sentiment coefficient from annual regressions of SUE
on lagged monthly sentiment (eq. A14) against annual average entropy. Panel E plots
the annual CAR0,0 sentiment coefficients against the annual SUE sentiment coefficients.
Panel F plots the annual CAR1,1 sentiment coefficients against the annual SUE sentiment
coefficients. Each point in the table corresponds to a single year of the sample. Each chart
also shows the R2 of the best fitting regression line (shown in purple) between the y- and
x-variables, as well as the slope coefficient and p-value of the regression, with standard
errors calculated using White’s heteroscedasticity correction.
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Table A1
Abbreviations.

Abbreviation Replacement Abbreviation Replacement
SYS SYSTEMS UTILS UTILITIES
MFG MANUFACTURING CHEM CHEMICAL
WLDWD WORLDWIDE INTL INTERNATIONAL
SVCS SERVICES INDS INDUSTRIES
PPTY PROPERTY INVS INVESTORS
RETRMENT RETIREMENT DEPT DEPARTMENT
RLTY REALTY TR TRUST
MGMT MANAGEMENT RES RESOURCES
NETWRKS NETWORKS SOLS SOLUTIONS
EXCH EXCHANGE HLDG HOLDING
REST RESORTS MACHS MACHINES
LTG LIGHTING LABS LABORATORIES
RESH RESEARCH FRAG FRAGRANCES
INFO INFORMATION

Table A2
Direct replacement.

Method Words
Direct INC, CORP, CO, GROUP, LTD, PLC, HOLDINGS, COMPANY,

COMPANIES, COS, HLDGS, GRP, 2ND, COR, GP, LLC

Table A3
Recursive replacement: Variant-1.

Method Words
Recursive NEW, DEL, DE, NY, VA, WIS, GA, AG, MA, NC,

NEV, NJ, OH, PA, TX, WA, NV, BRIDGEPORT, IND, AMER,
LIMITED, KANSAS

Table A4
Recursive replacement: Variant-2.

Method Words
Recursive INTERNATIONAL, ENERGY, FINANCIAL, INDUSTRIES, L, SYSTEMS,

RESOURCES, SERVICES, TECHNOLOGIES, TECHNOLOGY, INTL, POWER,
ELECTRIC, HOLDING, SVCS, SERVICE, OF, INDS, UTILITIES, SYS, ENERGIES,
UTILS, INSURANCE, LT, HLDG, RES
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Table A5
Replaced patterns in augmented article body. X denotes a numerical character, denotes
a space character, and [ ]*denotes zero or more space characters.

Pattern Replacement Pattern Replacement

Panel A: year and month

19XX 19XX.XX 19XX-XX y 20XX 20XX.XX 20XX-XX y

Panel B: entity names

s&p snp s & p snp
standard & poor’s snp standard and poor’s snp
snp 500 snp500 dow jones industrial average djia
new york stock exchange nyse london stock exchange ftse
stock exchange of hong kong sehk australian stock exchange asx
fannie mae fnma freddie mac fdmc
federal reserve fed securities and exchange commission sec
chief executive officer ceo chief financial officer cfo
chief operating officer coo chief investment officer cio
vice president vp international monetary fund imf
u.n. un

Panel C: numerical strings

XXXXXXXXXX bn XXXXXXX mn
X[ ]*billion bn X[ ]*million mn

Panel D: punctuation marks between sentences

? ! . : ; ***

Panel E: punctuation marks within sentences

“”# $ % & ‘’( ) *+ − \<= >@ [ ] ˆ`{|}˜

Table A6
The table shows the years of coverage of each news archive, the number of firm-day
observations from each news source for S&P 500 companies on the day the articles were
written, as well as the number of firm-day observations that overlap with our Thomson
Reuters data set. The article-PERMNO mapping procedure is explained in Section A1.B.
In the paper we only use the DJ, WSJ, and FT archives through the end of 2018.

Number of firm-day observations across different news archives

Years covered Number firm-day
(FD) observations

Number TR overlap-
ping FD observations

Thomson Reuters 1996 – 2018 706,000 —
Dow Jones 2000 – 2022 1,909,660 435,887
Wall Street Journal 2000 – 2022 346,245 162,865
Financial Times 2005 – 2019 163,278 94,114
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Table A7
Each row shows daily alphas, in basis points (bps), from the trading strategy explained in
Section V.D. The alphas are relative to the Fama and French (2015) five factor model with
momentum. The columns correspond to different values of the keep variable in (A10).
The columns without the TC label assume zero transaction costs; the ones with a TC
label assume transaction costs equal 3 bps per unit of turnover (round-trip transaction).
The rows correspond to different conditioning variables (none, intermediary capitalization,
active ownership, and entropy, respectively) that impact the gross size of the long-short
strategy via (A11), with the scale variable set to 0.165. The numbers in parentheses
represent p-values with standard errors calculated using Newey-West with lags equal to
the floor of 4(N/100)2/9 where N is the number of observations in the sample (see Hoechle
2007).

News trading strategy six-factor alphas (bps per day) with scale = 0.165

Condition Keep=1 Keep=0.33 Keep=1 TC Keep=0.33 TC

None 7.678 3.287 2.399 1.666

(0.000) (0.000) (0.037) (0.011)

CR 9.202 4.331 3.537 2.593

(0.000) (0.000) (0.006) (0.000)

ACTIVE/MARKET 8.645 3.844 3.087 2.138

(0.000) (0.000) (0.019) (0.005)

ENTROPY 7.543 3.244 2.693 1.754

(0.000) (0.000) (0.024) (0.010)
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Table A8
Each row shows daily alphas, in basis points (bps), from the trading strategy explained in
Section V.D. The alphas are relative to the Fama and French (2015) five factor model with
momentum. The columns correspond to different values of the keep variable in (A10).
The columns without the TC label assume zero transaction costs; the ones with a TC
label assume transaction costs equal 3 bps per unit of turnover (round-trip transaction).
The rows correspond to different conditioning variables (none, intermediary capitalization,
active ownership, and entropy, respectively) that impact the gross size of the long-short
strategy via (A11), with the scale variable set to 0.66. The numbers in parentheses
represent p-values with standard errors calculated using Newey-West with lags equal to
the floor of 4(N/100)2/9 where N is the number of observations in the sample (see Hoechle
2007).

News trading strategy six-factor alphas (bps per day) with scale = 0.66

Condition Keep=1 Keep=0.33 Keep=1 TC Keep=0.33 TC

None 7.678 3.287 2.399 1.666

(0.000) (0.000) (0.037) (0.011)

CR 13.772 7.466 6.909 5.360

(0.000) (0.000) (0.001) (0.000)

ACTIVE/MARKET 11.545 5.517 5.134 3.547

(0.000) (0.000) (0.008) (0.002)

ENTROPY 7.136 3.115 2.833 1.789

(0.000) (0.000) (0.060) (0.043)

Table A9
Summary statistics for the earnings regressions. All statistics are calculated by pooling
single-name data across all companies in our sample. This includes only the time periods
during which these companies were members of the S&P 500 index.

Summary statistics for earnings regressions

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

SUE (5% Win) 40, 000 −0.042 1.397 −4.320 −0.508 0.564 3.271

SAFE (5% Win) 36, 812 0.097 0.281 −0.568 −0.007 0.177 0.991

SENT 35, 839 −0.011 0.016 −0.250 −0.019 0.000 0.111

FORECAST DISPERSION (1% Win) 40, 053 0.146 0.172 0.000 0.040 0.185 1.217

FORECAST REVISIONS (1% Win) 40, 289 −0.001 0.003 −0.028 −0.000 0.000 0.007

CAR−2,−2 40, 478 0.029 1.918 −37.216 −0.803 0.806 55.365

CAR−30,−3 40, 477 −0.061 9.234 −82.174 −4.477 4.198 209.534

SHORT INTEREST (%) 38, 817 3.188 3.575 0.000 1.193 3.776 77.120

INSTITUTIONAL OWNERSHIP (%, 1% Win) 40, 320 71.423 19.075 0.962 61.612 84.583 111.719

log(MARKET CAP) 40, 425 23.152 1.162 19.079 22.377 23.831 27.481

IHS(BOOK/MARKET) (1% Win) 38, 274 0.448 0.303 −0.109 0.227 0.612 1.583

log(ILLIQUIDITY) 40, 468 −22.466 1.387 −27.596 −23.361 −21.589 −13.853

α 40, 467 0.015 0.116 −0.976 −0.046 0.069 1.222
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Table A10
These regressions include as controls: lagged SUE or SAFE, analyst forecast dispersion,
analyst forecast revisions, lagged abnormal returns CAR−2,−2 and CAR−30,−3, short in-
terest, institutional ownership, log market capitalization, the IHS transform of book to
market, log illiquidity, and the past year’s alpha from our six factor model. Standard
errors are clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and
1% levels.

SUE and SAFE forecastability by SENT

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

SUE 3.733∗∗∗ 3.971∗∗∗ 9.670∗∗∗ 4.323∗∗∗ 3.182∗∗ 3.144∗∗∗ 0.015

SAFE 0.557∗∗∗ 0.369 1.399∗∗∗ 0.743∗∗∗ 0.967∗∗ 0.379∗ 0.557∗∗

Table A11
These regressions include as controls: lagged SUE or SAFE, analyst forecast dispersion,
analyst forecast revisions, lagged abnormal returns CAR−2,−2 and CAR−30,−3, short in-
terest, institutional ownership, log market capitalization, the IHS transform of book to
market, log illiquidity, and the past year’s alpha from our six factor model. Standard
errors are clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and
1% levels.

SUE and SAFE forecastability by SENT excluding 4Q2017 and 1Q2018

1996-2017 Q3 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2017 Q3

SUE 4.078∗∗∗ 3.971∗∗∗ 9.670∗∗∗ 4.323∗∗∗ 3.182∗∗ 3.144∗∗∗ 1.678

SAFE 0.552∗∗∗ 0.369 1.399∗∗∗ 0.743∗∗∗ 0.967∗∗ 0.379∗ 0.528∗∗
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Table A12
Forecasting regressions for SUE and SAFE. These regressions include as controls: lagged
SUE or SAFE, analyst forecast dispersion, analyst forecast revisions, lagged abnormal
returns CAR−2,−2 and CAR−30,−3, short interest, institutional ownership, log market cap-
italization, the IHS transform of book to market, log illiquidity, and the past year’s alpha
from our six factor model. Standard errors are clustered by time. The *, **, and ***
indicate significance at the 10%, 5%, and 1% levels.

SUE and SAFE forecasting regressions from 1996 to 2018

Dependent variable:

SUE SAFE

CONSTANT 0.385 −0.169∗∗∗

SENT 3.733∗∗∗ 0.557∗∗∗

Lag(SUE) 0.263∗∗∗

Lag(SAFE) 0.213∗∗∗

FORECAST DISPERSION −0.601∗∗∗ 0.238∗∗∗

FORECAST REVISIONS 57.751∗∗∗ 7.491∗∗∗

CAR−2,−2 0.012∗∗∗ 0.002∗∗∗

CAR−30,−3 0.005∗∗∗ 0.002∗∗∗

SHORT INTEREST (%) −0.010∗∗∗ −0.003∗∗∗

IO (%) −0.001 0.0003∗∗∗

log(MARKET CAP) −0.032 −0.018∗∗∗

IHS(BOOK/MARKET) 0.034 −0.051∗∗∗

log(ILLIQUIDITY) −0.024 −0.029∗∗∗

α 1.394∗∗∗ 0.034∗∗

Observations 31,581 29,733
Adjusted R2 0.137 0.122

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A13
We obtain the monthly median short interest (SI) and median residualized ownership (RI),
and use these cutoffs to double sort stock-day observations by SI and RI (independently).
For each bucket, we run the main specification in equation (2). The coefficient estimates
ŝ and standard errors are reported in panel A. The average SI and average RI for each
bucket and the number of observations are shown in panel B. The *, **, and *** indicate
significance at the 10%, 5%, and 1% levels.

Return predictability by SI and RI
Panel A

Coefficients Standard Errors
Low RI High RI Low RI High RI

Low SI

CAR0,0 6.377∗∗∗ 11.028∗∗∗ (0.258) (0.466)
CAR0,0 (4pm-9:30am) 5.193∗∗∗ 7.894∗∗∗ (0.310) (0.580)
CAR1,1 0.953∗∗∗ 0.563 (0.225) (0.385)
CAR1,10 0.174 −0.533 (0.704) (1.191)

High SI

CAR0,0 5.666∗∗∗ 11.673∗∗∗ (0.210) (0.483)
CAR0,0 (4pm-9:30am) 3.810∗∗∗ 9.317∗∗∗ (0.231) (0.609)
CAR1,1 0.730∗∗∗ 1.577∗∗∗ (0.181) (0.369)
CAR1,10 0.416 4.109∗∗∗ (0.529) (1.075)

Panel B
Average SI Average RI Nobs

Low RI High RI Low RI High RI Low RI High RI
Low SI 0.013 0.013 −0.917 0.564 182,826 242,336
High SI 0.051 0.058 −1.061 1.210 122,740 123,514
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Table A14
We obtain the monthly median sentiment (SENT), median short interest (SI) and median
residualized ownership (RI), and use these cutoffs to triple sort stock-day observations by
sentiment, SI and RI (independently). For each bucket, we run the main specification
in equation (2). The coefficient estimates ŝ are reported in panels A and B, where A
includes the buckets with below median sentiment and B includes the buckets with above
median sentiment. Panels A and B also report the corresponding standard errors. The
average SENT, average SI and average RI, and number of observations for each bucket
are reported in panel C. The *, **, and *** indicate significance at the 10%, 5%, and 1%
levels.

Return predictability by SENT, SI and RI
Panel A: Low Sent

Coefficients Standard Errors
Low RI High RI Low RI High RI

Low SI

CAR0,0 3.959∗∗∗ 6.601∗∗∗ (0.399) (0.730)
CAR0,0 (4pm-9:30am) 2.120∗∗∗ 1.021 (0.474) (0.893)
CAR1,1 0.689∗ 0.275 (0.362) (0.629)
CAR1,10 0.326 2.609 (1.147) (2.002)

High SI

CAR0,0 3.572∗∗∗ 7.299∗∗∗ (0.351) (0.788)
CAR0,0 (4pm-9:30am) 0.832∗ 3.074∗∗∗ (0.446) (1.004)
CAR1,1 0.976∗∗∗ 0.444 (0.282) (0.616)
CAR1,10 1.244 4.042∗∗ (0.810) (1.818)

Panel B: High Sent
Coefficients Standard Errors

Low RI High RI Low RI High RI

Low SI

CAR0,0 4.530∗∗∗ 8.761∗∗∗ (0.657) (1.147)
CAR0,0 (4pm-9:30am) 1.071 3.747∗∗∗ (0.784) (1.408)
CAR1,1 0.360 0.639 (0.631) (0.986)
CAR1,10 −1.556 2.149 (1.798) (2.819)

High SI

CAR0,0 4.845∗∗∗ 9.427∗∗∗ (0.560) (0.967)
CAR0,0 (4pm-9:30am) 1.310∗∗ 3.875∗∗∗ (0.581) (1.245)
CAR1,1 0.674 0.802 (0.515) (0.867)
CAR1,10 1.291 4.149∗ (1.457) (2.488)

Panel C
Average SENT Average SI

Low SENT High SENT Low SENT High SENT
Low RI High RI Low RI High RI Low RI High RI Low RI High RI

Low SI -0.026 -0.025 0.004 0.003 0.013 0.013 0.014 0.013
High SI -0.027 -0.028 0.004 0.004 0.053 0.060 0.050 0.056

Average RI Nobs
Low SENT High SENT Low SENT High SENT

Low RI High RI Low RI High RI Low RI High RI Low RI High RI
Low SI -0.871 0.568 -0.963 0.561 91,692 123,648 91,134 118,688
High SI -1.082 1.181 -1.038 1.236 62,510 58,076 60,230 65,438
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Table A15
This table shows the estimated β0 from (A21). For the {1, 1} regressions the dependent
variable is the next day’s sentiment SENTi

t,1,1, and for the {1, 10} regressions the depen-

dent variable is the average sentiment measured over the next 10 days SENTi
t,1,10. In

both cases, the independent variable is the time t sentiment SENTi
t (or SENT

i
t,0,0). ***

indicates significance at the 1% level or better. Note that for a given i and j, (A21) is
the same for RETRFi,j and CARi,j.

News autocorrelation coefficient β0 from (A21)

Panel A: News autocorrelation channel conditional on intermediary capacity
Intermediary CAPACITY

CR (Daily) CR (Monthly) CR (Quarterly) LEV (Quarterly)

β̂0 s.e. β̂0 s.e. β̂0 s.e. β̂0 s.e.
RETRF1,1 0.250∗∗∗ 0.003 0.246∗∗∗ 0.003 0.246∗∗∗ 0.003 0.246∗∗∗ 0.003
RETRF1,10 0.181∗∗∗ 0.002 0.178∗∗∗ 0.002 0.178∗∗∗ 0.002 0.177∗∗∗ 0.002
CAR1,1 0.250∗∗∗ 0.003 0.246∗∗∗ 0.003 0.246∗∗∗ 0.003 0.246∗∗∗ 0.003
CAR1,10 0.181∗∗∗ 0.002 0.178∗∗∗ 0.002 0.178∗∗∗ 0.002 0.177∗∗∗ 0.002

Panel B: News autocorrelation channel conditional on mutual fund ownership
Mutual Fund OWNERSHIP

PASSIVE/MARKET ACTIVE/MARKET PASSIVE/FUND TOTAL

β̂0 s.e. β̂0 s.e. β̂0 s.e.
RETRF1,1 0.246∗∗∗ 0.003 0.247∗∗∗ 0.003 0.246∗∗∗ 0.003
RETRF1,10 0.177∗∗∗ 0.002 0.179∗∗∗ 0.002 0.177∗∗∗ 0.002
CAR1,1 0.246∗∗∗ 0.003 0.247∗∗∗ 0.003 0.246∗∗∗ 0.003
CAR1,10 0.177∗∗∗ 0.002 0.179∗∗∗ 0.002 0.177∗∗∗ 0.002
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Table A16
This table reports the test statistic g(θ̂) ≡ ŝ0

ŝ1
− β̂0

β̂1
, where the coefficient estimates

(ŝ0, ŝ1, β̂0, β̂1) come from the specification in (A15). These control vector Xt in these
regressions contains: constant, CAR0,0, CAR−1,−1, CAR−2,−2, CAR−30,−3, SUE, SI (%),
IO (%), log(MARKET CAP), IHS(BOOK/MARKET), log(ILLIQUIDITY), lagged α,
CAR2

0,0 and VIX. The *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Panel A: News autocorrelation channel conditional on intermediary capacity

Panel A: News autocorrelation channel conditional on intermediary capacity
Intermediary CAPACITY

CR (Daily) CR (Monthly) CR (Quarterly) LEV (Quarterly)

g(θ̂) p-value g(θ̂) p-value g(θ̂) p-value g(θ̂) p-value
RETRF1,1 −48.347∗∗ 0.013 −82.617∗∗∗ 0.002 −74.631∗∗∗ 0.003 −1237.636 0.836
RETRF1,10 −54.882∗∗∗ 0.006 −135.728∗∗∗ 0.002 −114.669∗∗∗ 0.005 310.987∗∗∗ 0.001
CAR1,1 −46.565∗∗ 0.012 −81.445∗∗∗ 0.002 −73.303∗∗∗ 0.004 −3658.469∗∗∗ 0.004
CAR1,10 −57.164∗∗∗ 0.000 −137.765∗∗∗ 0.000 −117.121∗∗∗ 0.000 304.077∗∗ 0.011

Panel B: News autocorrelation channel conditional on mutual fund ownership

Panel B: News autocorrelation channel conditional on mutual fund ownership
Mutual Fund OWNERSHIP

PASSIVE/MARKET ACTIVE/MARKET PASSIVE/FUND TOTAL

g(θ̂) p-value g(θ̂) p-value g(θ̂) p-value
RETRF1,1 −922.334∗∗∗ 0.006 −14.831 0.949 268.396∗ 0.068
RETRF1,10 −121.561∗∗ 0.011 −33.510∗∗ 0.028 264.377∗∗ 0.011
CAR1,1 −947.654∗∗ 0.011 98.582∗ 0.087 237.833 0.108
CAR1,10 −116.631∗∗∗ 0.004 −41.457∗∗∗ 0.005 282.622∗∗∗ 0.001
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Table A17
1-day ahead forecasting regressions. RETRFi,j (CARi,j) refers to the excess return (abnormal return) that includes days
t+ i, . . . , t+ j where t is the event date. Returns are measured in percent.

One-day ahead return regressions

Dependent variable:

RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

CONSTANT 0.126 0.136 −0.150 0.194 1.107∗ 0.870∗ 0.187 0.266 1.013 0.396 −0.035 0.089 −0.400 −0.278

SENT 1.192∗∗∗ 0.914∗∗∗ 2.129∗∗∗ 1.584∗∗∗ 0.566 1.314 1.160∗∗∗ 0.899∗∗∗ 1.174 1.156∗∗ 0.598∗∗ 0.227 0.480 0.719∗∗∗

CAR0,0 0.001 0.001 −0.001 0.002 0.017 0.020 0.011 0.009 −0.015 −0.017 0.006 0.005 0.004 −0.002

CAR−1,−1 −0.004 −0.008 −0.028∗∗∗ −0.024∗∗∗ 0.003 0.001 −0.012 −0.011 0.016 0.0001 0.002 0.0005 0.001 −0.004

CAR−2,−2 −0.009∗ −0.006 −0.009∗ −0.005 0.002 −0.0005 −0.004 −0.006 −0.016 −0.008 −0.004 −0.003 −0.007 −0.009

CAR−30,−3 −0.001 −0.001 −0.0003 −0.0001 0.00002 0.001 −0.004∗∗ −0.003∗∗ 0.001 −0.001 −0.001 −0.001 −0.003∗ −0.003∗∗

CAR2
0,0 0.0005 0.0005 −0.001 −0.0005 −0.003∗ −0.003∗∗ 0.0001 0.0001 0.001∗∗ 0.001∗∗ −0.001∗ −0.001∗ 0.001 0.0002

VIX 0.006 0.001 0.016∗ 0.004∗∗ 0.021 0.005 0.002 0.001 0.012 0.002 0.008 0.00000 0.012 −0.0004

SUE 0.011∗ 0.007∗∗∗ 0.0001 0.002 0.020 0.007 0.004 0.004 0.006 0.010 0.008 0.009∗∗ 0.016∗∗∗ 0.011∗∗∗

SHORT INTEREST (%) −0.006∗ −0.004∗ −0.005 −0.006 −0.015 −0.006 −0.007 −0.004 −0.015 −0.007 −0.0003 −0.001 0.0001 0.001

IO (%) −0.0002 −0.0002 0.001 0.0004 −0.001 −0.002 0.001 −0.0002 −0.005∗∗ −0.002∗ 0.0002 0.00003 0.001∗ 0.001∗

log(MARKET CAP) −0.033 −0.014∗ 0.026 0.008 −0.033 −0.079 −0.021 −0.013 −0.175∗ −0.014 0.015 −0.033∗∗ −0.022 −0.011

IHS(BOOK/MARKET) 0.024 0.0003 0.022 0.011 −0.029 0.006 0.072∗∗ 0.015 0.004 −0.072 0.030 0.007 0.014 0.022

log(ILLIQUIDITY) −0.026 −0.009 0.036 0.022 0.033 −0.048 −0.013 −0.003 −0.138 −0.005 0.018 −0.029∗∗ −0.031 −0.021∗

α −0.015 0.048 0.260∗∗ 0.226∗∗ 0.124 0.225 0.018 0.020 −0.349 −0.143 0.129 0.048 −0.049 0.050

Observations 618,367 618,367 111,817 111,817 26,383 26,383 144,277 144,277 97,376 97,376 154,433 154,433 84,081 84,081

Adjusted R2 0.001 0.0004 0.002 0.001 0.006 0.007 0.001 0.001 0.003 0.003 0.001 0.0003 0.001 0.0005

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A18
This table replicates the return forecastability results from Tetlock, Saar-Tsechansky, and Macskassy (2008). 1-day ahead
forecasting regressions. RETRFi,j (CARi,j) refers to the excess return (abnormal return) that includes days t + i, . . . , t + j
where t is the event date. Returns are measured in percent. These regressions include as controls: constant, CAR0,0,
CAR−1,−1, CAR−2,−2, CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET), log(ILLIQUIDITY),
lagged α, CAR2

0,0 and VIX. The row label (4pm-9:30am) indicates that SENT has been measured from the prior day’s close
to the event day’s market open. Standard errors are clustered by time. The *, **, and *** indicate significance at the 10%,
5%, and 1% levels.

Replication of return results from Tetlock, Saar-Tsechansky, and Macskassy (2008)

Dependent variable:

RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1 RETRF1,1 CAR1,1

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

CONSTANT −0.045 0.080 0.039 0.384∗∗ 0.218 0.600 0.176 0.143 −0.090 −0.338 −0.053 0.123 −0.203 −0.080

SENT 1.258∗∗∗ 0.961∗∗∗ 2.125∗∗∗ 1.674∗∗∗ 0.228 1.140 1.424∗∗∗ 0.976∗∗∗ 1.407 1.316∗∗ 0.559∗∗ 0.224 0.464 0.696∗∗∗

CAR0,0 0.0001 −0.001 −0.003 0.0001 0.017 0.012 0.006 0.004 −0.016 −0.017 0.006 0.005 0.003 −0.002

CAR−1,−1 −0.006 −0.010∗∗ −0.025∗∗∗ −0.024∗∗∗ −0.028 −0.012 −0.012 −0.012 0.016 −0.00003 0.002 0.0004 0.002 −0.003

CAR−2,−2 −0.011∗∗ −0.007∗ −0.013∗∗ −0.008 0.001 −0.001 −0.008 −0.009 −0.017 −0.009 −0.004 −0.003 −0.007 −0.009

CAR−30,−3 −0.001 −0.001 −0.0004 −0.0004 −0.002 −0.001 −0.004∗∗ −0.003∗∗ 0.001 −0.0004 −0.001 −0.001 −0.003∗ −0.003∗∗

CAR2
0,0 0.0004 0.0004 −0.001∗ −0.001 −0.003∗∗ −0.003∗∗ 0.0001 0.0001 0.001∗∗ 0.001∗∗ −0.001 −0.001∗ 0.0005 0.0001

VIX 0.006 0.001 0.017∗∗ 0.004∗∗ 0.031 0.008 0.001 0.001 0.010 0.002 0.008 −0.001 0.011 −0.001

α −0.006 0.096∗ 0.179∗ 0.179∗∗ 0.085 0.296 −0.015 0.070 −0.218 −0.131 0.110 0.074 −0.024 0.046

SUE 0.014∗∗ 0.009∗∗∗ 0.006 0.007 0.028 0.016 0.006 0.004 0.011 0.010 0.008 0.009∗∗ 0.015∗∗∗ 0.010∗∗∗

log(MARKET CAP) −0.005 −0.002 −0.015 −0.009 −0.045 −0.023 −0.010 0.001 −0.016 0.011 −0.006 −0.002 0.008 0.008

IHS(BOOK/MARKET) 0.030 −0.010 −0.017 −0.033 −0.040 −0.008 0.073∗∗ 0.018 −0.007 −0.067 0.028 0.008 0.003 0.010

log(SHARE TURNOVER) −0.013 0.008 −0.001 0.040∗∗ −0.023 0.033 −0.012 0.032∗∗ −0.044 −0.012 −0.019 0.012 0.023 0.018

Observations 647,078 647,078 125,136 125,136 30,367 30,367 150,999 150,999 98,390 98,390 156,317 156,317 85,869 85,869

Adjusted R2 0.001 0.0005 0.002 0.001 0.006 0.005 0.001 0.001 0.003 0.003 0.001 0.0003 0.001 0.0004

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A19
10-day ahead forecasting regressions. RETRFi,j (CARi,j) refers to the excess return (abnormal return) that includes days t+
i, . . . , t+j where t is the event date. Returns are measured in percent. These regressions include as controls: constant, CAR0,0,
CAR−1,−1, CAR−2,−2, CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET), log(ILLIQUIDITY),
lagged α, CAR2

0,0 and VIX. The row label (4pm-9:30am) indicates that SENT has been measured from the prior day’s close
to the event day’s market open. Standard errors are clustered by time. The *, **, and *** indicate significance at the 10%,
5%, and 1% levels.

Ten-day ahead return regressions

Dependent variable:

RETRF1,10 CAR1,10 RETRF1,10 CAR1,10 RETRF1,10 CAR1,10 RETRF1,10 CAR1,10 RETRF1,10 CAR1,10 RETRF1,10 CAR1,10 RETRF1,10 CAR1,10

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

CONSTANT 3.396∗∗∗ 1.975∗∗∗ 0.114 1.828∗∗∗ 4.102∗∗ 7.289∗∗∗ 2.493∗∗ 1.968∗∗∗ 18.527∗∗∗ 6.089∗∗∗ 1.146∗ 1.140∗∗∗ −3.316∗∗∗ −2.005∗∗∗

SENT 2.793∗∗∗ 0.821∗ 4.604∗∗∗ 2.748∗∗∗ −0.528 1.867 2.989∗∗∗ 2.632∗∗∗ 4.210∗ 0.096 1.280 −0.813 −1.796∗ −0.979

CAR0,0 −0.040∗∗∗ −0.038∗∗∗ −0.013 −0.007 −0.035 −0.015 −0.032∗ −0.032∗ −0.111∗∗∗ −0.102∗∗∗ 0.005 −0.010 −0.009 −0.020

CAR−1,−1 −0.051∗∗∗ −0.049∗∗∗ −0.027∗∗ −0.017 −0.030 −0.025 −0.079∗∗∗ −0.066∗∗∗ −0.086∗∗ −0.099∗∗ −0.0001 −0.002 −0.047∗∗ −0.045∗∗

CAR−2,−2 −0.065∗∗∗ −0.059∗∗∗ −0.043∗∗∗ −0.027∗ −0.006 0.040 −0.079∗∗∗ −0.068∗∗ −0.128∗∗∗ −0.132∗∗∗ −0.003 −0.001 −0.008 −0.030

CAR−30,−3 −0.005∗ −0.007∗∗∗ −0.005 0.001 −0.020∗∗ −0.013 −0.028∗∗∗ −0.021∗∗∗ 0.010 −0.006 −0.004 −0.005 −0.012∗∗ −0.020∗∗∗

CAR2
0,0 0.002 0.003∗∗∗ −0.001 −0.001 −0.003 −0.002 0.005∗∗∗ 0.006∗∗∗ 0.002 0.004∗∗ −0.0003 0.001 0.003∗∗ 0.002∗

VIX 0.020 0.002 0.084∗∗∗ 0.008 0.339∗∗∗ 0.042∗∗∗ 0.018 0.004 0.024 0.006 0.027 −0.005∗∗ 0.118∗∗∗ 0.007

SUE 0.039∗∗ 0.021∗∗∗ −0.035∗ −0.028 0.134∗∗∗ 0.008 −0.025 −0.012 −0.038 0.069∗∗∗ 0.059∗∗∗ 0.026∗∗ 0.073∗∗∗ 0.056∗∗∗

SHORT INTEREST (%) −0.027∗∗∗ −0.010∗ −0.008 −0.015 −0.081∗∗∗ −0.052∗∗ −0.020 0.017 −0.090∗∗∗ −0.025 0.018∗ −0.005 0.023 0.017

IO (%) −0.002∗∗ −0.002∗∗∗ 0.001 0.0001 0.001 −0.018∗∗∗ 0.007∗∗∗ 0.0002 −0.048∗∗∗ −0.024∗∗∗ 0.0003 −0.0005 0.004∗∗∗ 0.003∗∗∗

log(MARKET CAP) −0.218∗∗∗ −0.121∗∗∗ 0.188∗ 0.038 0.127 −0.231 −0.266∗ −0.113 −0.936∗∗∗ −0.091 0.322∗∗∗ −0.273∗∗∗ −0.078 −0.005

IHS(BOOK/MARKET) 0.218∗∗∗ −0.001 0.235∗ 0.258∗∗ 0.453∗∗ 0.729∗∗∗ 0.433∗∗∗ −0.010 0.321 −0.452∗∗∗ 0.122∗ 0.032 −0.027 −0.053

log(ILLIQUIDITY) −0.084 −0.046∗∗ 0.276∗∗∗ 0.136∗ 0.715∗∗∗ 0.085 −0.146 −0.031 −0.292 0.086 0.376∗∗∗ −0.234∗∗∗ −0.148∗∗ −0.072∗∗

α −0.360∗ −0.052 1.470∗∗∗ 1.676∗∗∗ −0.350 1.206∗∗ −0.318 −0.345 −1.871∗∗∗ −2.029∗∗∗ 1.198∗∗∗ 0.622∗∗∗ −1.056∗∗ −0.449

Observations 618,369 618,369 111,817 111,817 26,383 26,383 144,278 144,278 97,376 97,376 154,433 154,433 84,082 84,082

Adjusted R2 0.002 0.002 0.004 0.001 0.042 0.007 0.006 0.006 0.010 0.010 0.002 0.001 0.012 0.003

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A20
These regressions include as controls: constant, CAR0,0, CAR−1,−1, CAR−2,−2,
CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The RETRF0,0 and CAR0,0 regressions
omit the CAR0,0 control. The row label (4pm-9:30am) indicates that SENT has been
measured from the prior day’s close to the event day’s market open. Standard errors are
clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Return predictability

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

RETRF0,0 SENT 9.184∗∗∗ 9.842∗∗∗ 12.611∗∗∗ 9.694∗∗∗ 12.709∗∗∗ 5.117∗∗∗ 9.022∗∗∗

RETRF0,0 SENT (4pm-9:30am) 6.180∗∗∗ 6.010∗∗∗ 8.783∗∗∗ 7.470∗∗∗ 7.076∗∗∗ 3.888∗∗∗ 5.870∗∗∗

RETRF1,1 SENT 1.192∗∗∗ 2.129∗∗∗ 0.566 1.160∗∗∗ 1.174 0.598∗∗ 0.480

RETRF1,10 SENT 2.793∗∗∗ 4.604∗∗∗ −0.528 2.989∗∗∗ 4.210∗ 1.280 −1.796∗

CAR0,0 SENT 8.086∗∗∗ 9.209∗∗∗ 10.562∗∗∗ 9.084∗∗∗ 9.715∗∗∗ 4.404∗∗∗ 8.251∗∗∗

CAR0,0 SENT (4pm-9:30am) 5.949∗∗∗ 5.718∗∗∗ 7.594∗∗∗ 7.445∗∗∗ 6.960∗∗∗ 3.946∗∗∗ 5.495∗∗∗

CAR1,1 SENT 0.914∗∗∗ 1.584∗∗∗ 1.314 0.899∗∗∗ 1.156∗∗ 0.227 0.719∗∗∗

CAR1,10 SENT 0.821∗ 2.748∗∗∗ 1.867 2.632∗∗∗ 0.096 −0.813 −0.979
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Table A21
These regressions include as controls: constant, CAR0,0, CAR−1,−1, CAR−2,−2,
CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The row label (4pm-9:30am) indicates
that SENT has been measured from the prior day’s close to the event day’s market open.
Standard errors are clustered by time. The *, **, and *** indicate significance at the
10%, 5%, and 1% levels. Each ownership series in these regressions has been trimmed to
exclude in each month the bottom 2.5% of observations.

Mutual fund ownership effects on sentiment predictability
(trimmed ownership)

Return regressions

Mutual Fund OWNERSHIP (%)
PASSIVE/MARKET ACTIVE/MARKET PASSIVE/FUND TOTAL

RETRF0,0 SENT 9.306∗∗∗ 9.212∗∗∗ 9.216∗∗∗

SENT×OWNERSHIP −0.071 0.204∗∗∗ −0.053∗∗∗

RETRF0,0 SENT (4pm-9:30am) 6.272∗∗∗ 6.194∗∗∗ 6.277∗∗∗

SENT (4pm-9:30am)×OWNERSHIP −0.061 0.213∗∗∗ −0.059∗∗∗

RETRF1,1 SENT 1.170∗∗∗ 1.186∗∗∗ 1.178∗∗∗

SENT×OWNERSHIP −0.080 0.017 −0.013
RETRF1,10 SENT 2.770∗∗∗ 2.861∗∗∗ 2.776∗∗∗

SENT×OWNERSHIP −0.498∗∗∗ 0.216∗∗ −0.137∗∗∗

CAR regressions

Mutual Fund OWNERSHIP (%)
PASSIVE/MARKET ACTIVE/MARKET PASSIVE/FUND TOTAL

CAR0,0 SENT 8.169∗∗∗ 8.081∗∗∗ 8.088∗∗∗

SENT×OWNERSHIP −0.048 0.188∗∗∗ −0.045∗∗∗

CAR0,0 SENT (4pm-9:30am) 6.002∗∗∗ 5.935∗∗∗ 6.004∗∗∗

SENT (4pm-9:30am)×OWNERSHIP −0.007 0.189∗∗∗ −0.036∗∗

CAR1,1 SENT 0.925∗∗∗ 0.926∗∗∗ 0.932∗∗∗

SENT×OWNERSHIP −0.047 0.032 −0.018∗

CAR1,10 SENT 0.975∗∗ 0.932∗∗ 0.894∗∗

SENT×OWNERSHIP −0.346∗∗∗ 0.150∗∗ −0.115∗∗∗
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Table A22
These regressions include as controls: constant, CAR0,0, CAR−1,−1, CAR−2,−2,
CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The row label (4pm-9:30am) indicates
that SENT has been measured from the prior day’s close to the event day’s market open.
Standard errors are clustered by time. The *, **, and *** indicate significance at the
10%, 5%, and 1% levels. These specifications drop all event days that fall on earnings
announcement days, or on subsequent business days.

Return predictability (dropped earnings days)

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

RETRF0,0 SENT 7.684∗∗∗ 8.972∗∗∗ 11.802∗∗∗ 7.967∗∗∗ 10.834∗∗∗ 3.832∗∗∗ 6.137∗∗∗

RETRF0,0 SENT (4pm-9:30am) 4.832∗∗∗ 5.382∗∗∗ 8.283∗∗∗ 5.951∗∗∗ 5.045∗∗∗ 2.543∗∗∗ 3.574∗∗∗

RETRF1,1 SENT 1.131∗∗∗ 2.047∗∗∗ 0.301 1.075∗∗∗ 1.021 0.691∗∗ 0.345

RETRF1,10 SENT 3.012∗∗∗ 4.731∗∗∗ −0.202 2.931∗∗∗ 4.075 1.524∗ −1.624

CAR0,0 SENT 6.599∗∗∗ 8.323∗∗∗ 9.809∗∗∗ 7.400∗∗∗ 7.752∗∗∗ 3.207∗∗∗ 5.332∗∗∗

CAR0,0 SENT (4pm-9:30am) 4.637∗∗∗ 5.133∗∗∗ 7.089∗∗∗ 5.966∗∗∗ 4.898∗∗∗ 2.716∗∗∗ 3.088∗∗∗

CAR1,1 SENT 0.870∗∗∗ 1.444∗∗∗ 0.854 0.875∗∗∗ 1.115∗∗ 0.290 0.619∗∗

CAR1,10 SENT 0.850∗ 2.709∗∗ 2.576 2.581∗∗∗ −0.280 −0.798 −1.102

Table A23
These regressions include as controls: constant, CAR0,0, CAR−1,−1, CAR−2,−2,
CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), and lagged α. The row label (4pm-9:30am) indicates that SENT
has been measured from the prior day’s close to the event day’s market open. Standard
errors are clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and
1% levels. These specifications do not include the VIX and the squared lagged CARs as
explanatory variables.

Return predictability (no volatility controls)

1996-2018 1996-2000 2001 2002-2006 2007-2009 2010-2014 2015-2018

RETRF0,0 SENT 9.593∗∗∗ 9.956∗∗∗ 14.579∗∗∗ 10.200∗∗∗ 13.775∗∗∗ 5.484∗∗∗ 9.177∗∗∗

RETRF0,0 SENT (4pm-9:30am) 6.552∗∗∗ 6.116∗∗∗ 10.493∗∗∗ 7.960∗∗∗ 7.900∗∗∗ 4.328∗∗∗ 5.931∗∗∗

RETRF1,1 SENT 1.002∗∗∗ 2.038∗∗∗ 0.314 1.118∗∗∗ 0.359 0.526∗ 0.420

RETRF1,10 SENT 2.225∗∗∗ 4.104∗∗∗ −5.802 2.291∗∗ 2.673 1.009 −2.373∗∗

CAR0,0 SENT 7.993∗∗∗ 9.083∗∗∗ 11.760∗∗∗ 9.099∗∗∗ 9.558∗∗∗ 4.452∗∗∗ 8.215∗∗∗

CAR0,0 SENT (4pm-9:30am) 5.835∗∗∗ 5.584∗∗∗ 8.499∗∗∗ 7.454∗∗∗ 6.701∗∗∗ 3.972∗∗∗ 5.468∗∗∗

CAR1,1 SENT 0.861∗∗∗ 1.580∗∗∗ 1.320 0.879∗∗∗ 0.926∗ 0.233 0.718∗∗∗

CAR1,10 SENT 0.627 2.771∗∗∗ 1.286 2.187∗∗ −0.620 −0.768 −1.031
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Table A24
These regressions include as controls: constant, CAR0,0, CAR−1,−1, CAR−2,−2,
CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The row label (4pm-9:30am) indicates
that SENT has been measured from the prior day’s close to the event day’s market open.
Standard errors are clustered by time. The *, **, and *** indicate significance at the
10%, 5%, and 1% levels.

VIX effects on sentiment predictability

Return regressions

VIX
RETRF0,0 SENT 0.477

SENT×VIX 0.425∗∗∗

RETRF0,0 SENT (4pm-9:30am) 2.534∗

SENT (4pm-9:30am)×VIX 0.178∗∗

RETRF1,1 SENT 2.395
SENT×VIX −0.059

RETRF1,10 SENT 9.571∗∗

SENT×VIX −0.331

CAR regressions

VIX
CAR0,0 SENT 3.260∗∗∗

SENT×VIX 0.235∗∗∗

CAR0,0 SENT (4pm-9:30am) 3.953∗∗∗

SENT (4pm-9:30am)×VIX 0.098∗∗

CAR1,1 SENT 1.053∗

SENT×VIX −0.007
CAR1,10 SENT 6.501∗∗∗

SENT×VIX −0.277∗∗∗
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Table A25
Intermediary capacity regressions in specification (5) using data from four different news sources – Thomson Reuters (TR),
Dow Jones (DJ), Wall Street Journal (WSJ), and Financial Times (FT). RETRFi,j (CARi,j) refers to the excess return (abnor-
mal return) that includes days t+i, . . . , t+j where t is the event date. Returns are measured in percent. Coefficients have been
standardized to reflect a one standard deviation increase in the explanatory variable. These regressions include as controls:
constant, CAR0,0, CAR−1,−1, CAR−2,−2, CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The RETRF0,0 and CAR0,0 regressions omit the CAR0,0 control. Standard
errors are clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Intermediary capacity effects on sentiment predictability using data from different news sources

Intermediary CAPACITY

CR (Daily) CR (Monthly) CR (Quarterly) Lev (Quarterly)

TR DJ WSJ FT TR DJ WSJ FT TR DJ WSJ FT TR DJ WSJ FT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RETRF0,0 Sent 0.196∗∗∗ 0.344∗∗∗ 0.066∗∗∗ 0.265∗∗∗ 0.194∗∗∗ 0.344∗∗∗ 0.065∗∗∗ 0.265∗∗∗ 0.194∗∗∗ 0.344∗∗∗ 0.065∗∗∗ 0.264∗∗∗ 0.195∗∗∗ 0.348∗∗∗ 0.071∗∗∗ 0.264∗∗∗

Sent×Capacity 0.008∗∗∗ −0.012∗∗∗ −0.002 −0.026∗∗∗ 0.009∗∗∗ −0.018∗∗∗ −0.003 −0.031∗ 0.011∗∗∗ −0.016∗∗∗ −0.004 −0.030∗ 0.005∗∗∗ 0.009∗∗∗ −0.004∗∗ 0.003

RETRF1,1 Sent 0.021∗∗∗ 0.025∗∗∗ 0.013 0.014 0.025∗∗∗ 0.025∗∗∗ 0.013 0.014 0.025∗∗∗ 0.025∗∗∗ 0.013 0.014 0.024∗∗∗ 0.022∗∗∗ 0.011 0.013

Sent×Capacity 0.003 −0.000 −0.002 0.009 0.004 −0.002 −0.006 0.014 0.004 −0.003 −0.006 0.013 0.001 0.003∗ 0.003 −0.003

RETRF1,10 Sent 0.040∗∗∗ 0.041∗∗ 0.020 0.103∗∗∗ 0.059∗∗∗ 0.041∗∗ 0.019 0.104∗∗∗ 0.059∗∗∗ 0.042∗∗ 0.019 0.101∗∗∗ 0.049∗∗∗ 0.013 0.010 0.078∗∗

Sent×Capacity 0.010 0.008 0.015 0.022 0.016∗∗ 0.012 0.017 0.025 0.014∗ 0.005 0.011 −0.005 0.013∗∗∗ 0.015∗∗∗ 0.016∗∗ 0.006

CAR0,0 Sent 0.174∗∗∗ 0.249∗∗∗ 0.065∗∗∗ 0.177∗∗∗ 0.171∗∗∗ 0.249∗∗∗ 0.065∗∗∗ 0.177∗∗∗ 0.171∗∗∗ 0.249∗∗∗ 0.065∗∗∗ 0.177∗∗∗ 0.172∗∗∗ 0.251∗∗∗ 0.066∗∗∗ 0.179∗∗∗

Sent×Capacity 0.009∗∗∗ −0.001 −0.003 −0.006 0.011∗∗∗ −0.001 −0.006 −0.004 0.011∗∗∗ −0.000 −0.006 −0.004 0.003∗∗∗ 0.004∗∗∗ −0.001 −0.003∗

CAR1,1 Sent 0.018∗∗∗ 0.021∗∗∗ 0.013∗∗ −0.000 0.019∗∗∗ 0.021∗∗∗ 0.012∗∗ 0.000 0.019∗∗∗ 0.021∗∗∗ 0.012∗∗ 0.000 0.019∗∗∗ 0.021∗∗∗ 0.011∗∗ 0.001

Sent×Capacity 0.003∗∗ 0.000 −0.001 0.007 0.004∗∗∗ −0.000 −0.002 0.012∗ 0.004∗∗∗ −0.001 −0.003 0.011∗ 0.000 0.002∗ 0.001 −0.003∗∗

CAR1,10 Sent 0.011 0.038∗∗∗ 0.005 0.001 0.018∗ 0.038∗∗∗ 0.006 0.001 0.018∗ 0.038∗∗∗ 0.005 0.000 0.017∗ 0.037∗∗∗ 0.005 0.007

Sent×Capacity 0.014∗∗∗ 0.005 0.014∗ 0.029∗ 0.018∗∗∗ 0.008 0.020 0.049∗ 0.016∗∗∗ 0.005 0.014 0.039∗ 0.004∗∗ 0.004 −0.000 −0.013∗∗∗
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Table A26
Mutual fund ownership regressions in specification (6) using data from four different news sources – Thomson Reuters
(TR), Dow Jones (DJ), Wall Street Journal (WSJ), and Financial Times (FT). RETRFi,j (CARi,j) refers to the excess
return (abnormal return) that includes days t + i, . . . , t + j where t is the event date. Returns are measured in percent.
Coefficients have been standardized to reflect a one standard deviation increase in the explanatory variable. These regres-
sions include as controls: constant, CAR0,0, CAR−1,−1, CAR−2,−2, CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP),
IHS(BOOK/MARKET), log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The RETRF0,0 and CAR0,0 regressions omit the
CAR0,0 control. Standard errors are clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and 1%
levels.

Mutual fund ownership effects on sentiment predictability using data from different news sources

Mutual Fund OWNERSHIP (%)

PASSIVE/MARKET ACTIVE/MARKET PASSIVE/FUND TOTAL

TR DJ WSJ FT TR DJ WSJ FT TR DJ WSJ FT

1 2 3 4 5 6 7 8 9 10 11 12

RETRF0,0 Sent 0.195∗∗∗ 0.345∗∗∗ 0.067∗∗∗ 0.262∗∗∗ 0.193∗∗∗ 0.342∗∗∗ 0.069∗∗∗ 0.251∗∗∗ 0.194∗∗∗ 0.345∗∗∗ 0.067∗∗∗ 0.264∗∗∗

Sent×Ownership −0.001 −0.001 0.001 0.031∗∗∗ 0.004∗∗∗ 0.003∗∗ 0.004∗∗∗ 0.014∗∗∗ −0.001∗∗∗ −0.000 −0.001 −0.000

RETRF1,1 Sent 0.025∗∗∗ 0.025∗∗∗ 0.013 0.013 0.025∗∗∗ 0.024∗∗∗ 0.013 0.014 0.025∗∗∗ 0.025∗∗∗ 0.014 0.015

Sent×Ownership −0.002 −0.002 −0.001 0.001 0.000 0.001 −0.001 −0.000 −0.000 −0.001 0.000 0.001

RETRF1,10 Sent 0.055∗∗∗ 0.042∗∗ 0.018 0.098∗∗∗ 0.057∗∗∗ 0.040∗∗ 0.027 0.082∗∗ 0.057∗∗∗ 0.040∗∗ 0.024 0.095∗∗∗

Sent×Ownership −0.009∗∗ −0.010∗∗ −0.012 −0.007 0.005∗∗∗ 0.002 0.010∗∗ 0.021∗∗∗ −0.002∗∗∗ −0.002 −0.004∗ −0.007∗∗

CAR0,0 Sent 0.171∗∗∗ 0.249∗∗∗ 0.066∗∗∗ 0.174∗∗∗ 0.170∗∗∗ 0.245∗∗∗ 0.068∗∗∗ 0.167∗∗∗ 0.171∗∗∗ 0.249∗∗∗ 0.066∗∗∗ 0.178∗∗∗

Sent×Ownership −0.000 0.001 0.001 0.036∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.010∗∗∗ −0.001∗∗∗ −0.000 −0.001∗ 0.001

CAR1,1 Sent 0.019∗∗∗ 0.021∗∗∗ 0.013∗∗ −0.001 0.019∗∗∗ 0.020∗∗∗ 0.012∗ 0.000 0.019∗∗∗ 0.020∗∗∗ 0.013∗∗ 0.001

Sent×Ownership −0.001 −0.002∗ −0.000 0.002 0.001 0.000 −0.001 −0.000 −0.000 −0.000 0.000 0.001

CAR1,10 Sent 0.017∗ 0.039∗∗∗ 0.002 −0.003 0.016∗ 0.035∗∗∗ 0.007 −0.011 0.017∗ 0.037∗∗∗ 0.006 −0.002

Sent×Ownership −0.006∗∗∗ −0.005∗ −0.008 0.023∗∗∗ 0.004∗∗∗ 0.003 0.005 0.011∗∗ −0.002∗∗∗ −0.001∗ −0.003 −0.002
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Table A27
Entropy regressions in specification (7) using data from four different news sources – Thomson Reuters (TR), Dow Jones
(DJ), Wall Street Journal (WSJ), and Financial Times (FT). RETRFi,j (CARi,j) refers to the excess return (abnormal
return) that includes days t+ i, . . . , t+ j where t is the event date. Returns are measured in percent. Coefficients have been
standardized to reflect a one standard deviation increase in the explanatory variable. These regressions include as controls:
constant, CAR0,0, CAR−1,−1, CAR−2,−2, CAR−30,−3, SUE, SI (%), IO (%), log(MARKET CAP), IHS(BOOK/MARKET),
log(ILLIQUIDITY), lagged α, CAR2

0,0 and VIX. The RETRF0,0 and CAR0,0 regressions omit the CAR0,0 control. Standard
errors are clustered by time. The *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Entropy effects on sentiment predictability using data from different news sources

ENTROPY

Daily Monthly Quarterly Annual

TR DJ WSJ FT TR DJ WSJ FT TR DJ WSJ FT TR DJ WSJ FT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RETRF0,0 Sent 0.201∗∗∗ 0.345∗∗∗ 0.065∗∗∗ 0.259∗∗∗ 0.204∗∗∗ 0.347∗∗∗ 0.067∗∗∗ 0.272∗∗∗ 0.205∗∗∗ 0.347∗∗∗ 0.067∗∗∗ 0.272∗∗∗ 0.205∗∗∗ 0.346∗∗∗ 0.067∗∗∗ 0.278∗∗∗

Sent×Entropy 0.260∗∗∗ 0.003 −0.158 −0.226 0.799∗∗∗ 0.254 −0.009 0.236 0.971∗∗∗ 0.328∗ 0.128 0.207 1.057∗∗∗ 0.235 0.063 0.414

RETRF1,1 Sent 0.021∗∗∗ 0.025∗∗∗ 0.016 0.014 0.023∗∗∗ 0.026∗∗∗ 0.015 0.008 0.022∗∗∗ 0.026∗∗∗ 0.014 0.007 0.022∗∗∗ 0.026∗∗∗ 0.014 0.001

Sent×Entropy 0.156∗ 0.159 0.285∗∗ 0.037 0.170 0.186 0.410∗∗ −0.199 0.200 0.290∗∗ 0.265 −0.206 0.179 0.275∗ 0.326 −0.423

RETRF1,10 Sent 0.040∗∗∗ 0.040∗∗ 0.027 0.098∗∗ 0.039∗∗∗ 0.043∗∗ 0.024 0.170∗∗∗ 0.035∗∗ 0.044∗∗ 0.023 0.133∗∗ 0.032∗∗ 0.043∗∗ 0.022 0.135∗

Sent×Entropy 0.293 0.081 0.799∗∗ −0.093 0.652∗ 0.813∗∗ 0.889∗ 2.472∗∗∗ 0.321 0.975∗∗∗ 1.017∗ 1.276 −0.041 0.923∗∗ 1.084∗ 1.438

CAR0,0 Sent 0.177∗∗∗ 0.248∗∗∗ 0.064∗∗∗ 0.162∗∗∗ 0.178∗∗∗ 0.250∗∗∗ 0.065∗∗∗ 0.171∗∗∗ 0.179∗∗∗ 0.251∗∗∗ 0.066∗∗∗ 0.154∗∗∗ 0.179∗∗∗ 0.250∗∗∗ 0.066∗∗∗ 0.145∗∗∗

Sent×Entropy 0.176∗∗∗ −0.098 −0.184∗ −0.540∗∗∗ 0.682∗∗∗ 0.292∗∗∗ −0.001 −0.215 0.806∗∗∗ 0.361∗∗∗ 0.151 −0.822∗∗ 0.896∗∗∗ 0.337∗∗ 0.233 −1.165∗∗

CAR1,1 Sent 0.018∗∗∗ 0.021∗∗∗ 0.013∗∗ −0.002 0.019∗∗∗ 0.021∗∗∗ 0.013∗∗ −0.006 0.019∗∗∗ 0.021∗∗∗ 0.013∗∗ −0.013 0.019∗∗∗ 0.021∗∗∗ 0.013∗∗ −0.016

Sent×Entropy 0.068 0.004 0.105 −0.053 0.105 0.078 0.148 −0.214 0.168∗∗ 0.114 0.096 −0.433∗ 0.160∗ 0.114 0.160 −0.587∗

CAR1,10 Sent 0.009 0.038∗∗∗ 0.006 −0.011 0.010 0.040∗∗∗ 0.006 0.012 0.010 0.039∗∗∗ 0.005 −0.054 0.010 0.039∗∗∗ 0.006 −0.091∗

Sent×Entropy 0.280∗∗ 0.011 0.211 −0.384 0.424∗∗ 0.319 0.268 0.463 0.341 0.189 0.212 −1.869∗∗ 0.314 0.265 0.517 −3.294∗∗∗
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Table A28
We test the null hypothesis H0 from (8) that regression results are indistinguishable using sentiment from the Thomson
Reuters unrestricted sample versus sentiment from Thomson Reuters but restricted to firm-day observations which overlap
with those of three alternative news sources. A “−” indicates that the coefficient estimates from the unrestricted Thomson
Reuters archive and from the Thomson Reuters archive restricted to the same firm-day observations as an alternative
news source have different signs but are not statistically different; stars without an ✗ indicate the coefficients are statistically
different but their signs are the same. Statistically significant qualitative differences – requiring different signs and statistically
different coefficients – are indicated by an ✗. The *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Comparing results using Thomson Reuters sentiment for the unrestricted sample versus Thomson Reuters
sentiment for the restricted samples

Full Intermediary CAPACITY Mutual Fund OWNERSHIP ENTROPY

CR (Daily) CR (Monthly) CR (Quarterly) LEV (Quarterly) PASSIVE/MARKET ACTIVE/MARKET PASSIVE/FUND TOTAL Daily Monthly Quarterly Annual

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RETRF0,0 DJ ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

WSJ ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

FT ✗*** – – ✗*** ✗*** – ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

RETRF1,1 DJ ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** – ✗*** ✗*** ✗*** ✗***

WSJ ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

FT ✗*** ✗*** ✗*** – ✗*** ✗*** – – ✗*** ✗*** ✗*** ✗***

RETRF1,10 DJ ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

WSJ ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** – ✗***

FT ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** ✗*** –

CAR0,0 DJ ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

WSJ ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

FT ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

CAR1,1 DJ ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

WSJ ✗*** ✗*** ✗*** ✗*** – – ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

FT ✗*** ✗*** ✗*** – – ✗*** – – ✗*** ✗*** ✗*** ✗***

CAR1,10 DJ – ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗***

WSJ – ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** – –

FT – ✗*** ✗*** ✗*** ✗*** ✗*** ✗*** – ✗*** ✗*** ✗*** ✗***
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